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Berberine as a potential agent
for breast cancer therapy
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Dan Zhao1,2,3*, Guan-Jun Yang1,2,3* and Jiong Chen1,2,3*
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products, Ningbo University, Ningbo, China, 2Laboratory of Biochemistry and Molecular Biology,
School of Marine Sciences, Ningbo University, Ningbo, China, 3Key Laboratory of Applied Marine
Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
Breast cancer (BC) is a common malignancy that mainly occurred in women

and it has become the most diagnosed cancer annually since 2020. Berberine

(BBR), an alkaloid extracted from the Berberidacea family, has been found with

broad pharmacological bioactivities including anti-inflammatory, anti-diabetic,

anti-hypertensive, anti-obesity, antidepressant, and anticancer effects.

Mounting evidence shows that BBR is a safe and effective agent with good

anticancer activity against BC. However, its detailed underlying mechanism in

BC treatment remains unclear. Here, we will provide the evidence for BBR in BC

therapy and summarize its potential mechanisms. This review briefly introduces

the source, metabolism, and biological function of BBR and emphasizes the

therapeutic effects of BBR against BC via directly interacting with effector

proteins, transcriptional regulatory elements, miRNA, and several BBR-

mediated signaling pathways. Moreover, the novel BBR-based therapeutic

strategies against BC improve biocompatibility and water solubility, and the

efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC

treatment and future research directions is also prospected.
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Introduction

Breast cancer (BC) is one of the most common cancers in women and is characterized

by a malignant proliferation of mammary tissue (1–3). In 2020, BC has overtaken lung

cancer and become the leading diagnosed and death-causing cancer among women all

over the world (4–7). BC is a heterogeneous disease and it can be classified into different

subtypes based on diverse molecular biomarkers (8). According to the statuses of four

molecular biomarkers, namely, estrogen receptor (ER), progesterone receptor (PR),

human epidermal growth factor receptor 2 (HER2), and Ki67, BC can be classified

into four main intrinsic subtypes: luminal A, luminal B, HER2-enriched, and triple-
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negative (1, 8). Luminal A subtype is characterized with ER+/

PR+/HER2-/Ki-67low biomarkers and low recurrence risk and

favorable prognosis. Luminal B subtype is characterized with

ER+/PR-/HER2+/Ki-67high biomarkers. HER2-enriched is the

third subtype of BC characterized with ER-/PR-/HER2+

biomarkers. Triple-negative BC (TNBC) is the subtype of BC

with ER-/PR-/HER2- biomarkers and the poorest prognosis in

clinical studies (7–11).

Currently, there are many methods comprehensively and

extensively used in BC therapy. Surgery, radiotherapy, and

chemotherapy are the most common therapeutic strategies

used to treat all the subtypes of BC in clinic, but most patients

would develop drug resistance or relapse later. For the moment,

endocrine or single-targeted therapy only has been approved to

treat non-TNBC in clinic, and most of them showed poor

prognosis and recurrence due to tumor metastasis and drug

resistance (11–13), suggesting that a portion of patients develop

medicine resistance and experience severe side effects after

Western medicine treatment (14). For TNBC, although many

novel target therapeutic strategies have been identified and their

modulators exhibited good anti-BC activities in vitro and in vivo,

none of them have been approved in clinic due to poor efficacy in

clinical trials and potent side effects (11). Therefore, it is

extremely eager to seek a more effective conservative and

multi-target therapeutic agent that could treat cancer without

residual symptoms to patients. Traditional Chinese medicine

(TCM) as a therapeutic strategy for varieties of diseases has been

used for thousands of years and shows remarkable validation in

many diseases. With the development of standardization of

TCM, some extracted monomers also show excellent efficacy

against different diseases. Among them, alkaloid berberine

(BBR) exhibited good efficacy against BC. Here, we summarize
Frontiers in Oncology 02
the source and biological function of BBR, action mechanisms,

and novel therapeutic strategies using BBR against BC.

Moreover, the strategies to improve the efficacies of BBR

against human BC are also briefly discussed.
The overview of BBR

BBR, a pentacyclic isoquinoline compound with a relative

molecular weight of 336.37 (Figure 1), is a bioalkaloid initially

found in the rhizome, bark, and other structures of Chinese herb

Coptis chinensis Franch, and some berberis plants mainly

including Berberis aristate DC., Berberis darwinii Hook, and

Berberis vulgaris L (15–17). The later study demonstrated that

BBR could be also extracted from some other plants (18). With

the aid of UDG glucuronosyltransferase and cytochrome (19),

BBR could be transformed into four major types of metabolites:

berberrubine, demethyleneberberine, thalifendine, and

jatrorrhizine in the liver and intestine in vivo (20, 21).

Interestingly, the type and quantity of metabolites the

metabolites are different in distinct species (22).

BBR, a traditional Chinese medicine, has been used to clear

heat and detoxify toxins, promote blood circulation and remove

blood stasis, and dispel dampness and cold for over one

thousand years (23). Recently, a substantial body of studies

showed that BBR has diverse pharmacological effects including

anti-hypertensive, anti-oxidative, anti-inflammatory, anti-

diabetic, immunosuppressive (24), anti-cardiovascular (21),

and neuroprotective activities (3, 6, 25, 26). Therefore, BBR

was widely used to treat lots of infectious, metabolic,

cardiovascular, and neurological diseases. Notably, BBR also

could prevent and treat some different cancers triggered by
FIGURE 1

Schematic illustration of the effect of BBR on signaling pathways of apoptosis and cell cycle arrest in BC.
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gene mutations and agricultural hazard factors (27). The

mounting evidence suggested that BBR inhibited proliferation

as well as induced apoptosis and cell cycle arrest in different

cancer cell lines without significant cytotoxicity effect on most

non-malignant epithelial cell lines (28–31). Due to its good

activity to prevent, inhibit, and reverse the progression of

varieties of cancers, BBR has received remarkable interest as a

potential anticancer agent in the treatment of many cancers,

especially for BC (32).

The molecular targets of BBR
against BC

BBR is a multi-target drug that has been proved effective in

treating many cancers and inflammatory diseases. It has been

found to combat different cancers via binding to diverse

molecular targets due to the heterogeneity among different

cancers or different subtypes of same cancer. In BC, BBR has

also been found to directly bind several target proteins and DNA

sequences to exhibit its anticancer activity.
SIK3

Salt-inducible kinases 3 (SIK3) is an oncogene that plays an

important role in BC cells (33). The overexpression of SIK3

promotes BC cell proliferation and growth via regulating the cell

cycle (34). Meanwhile, BBR is found to function as a SIK3

inhibitor through binding its ATP-binding pocket via hydrogen

bonding. Further study found that BBR exhibited its anticancer

activity partially via binding to SIK3 and inducing cell cycle

arrest at G1/S cell cycle arrest and apoptosis in BC cells (35).
Ephrin-B2

Ephrin-B2, a single transmembrane cell surface protein (36),

is one of the membrane-bound ligands of the eph receptor family

(37). The binding of eph receptor and ephrin-B2 in the

membrane activates ephrin-B2 signaling (38). This signaling

promotes the cancer cell survival and migration via conveying

both receptor-expressing cells and ligand-expressing cells (39–

41). Ma et al. identified that BBR could directly bind ephrin-B2

and significantly reduce ephrin-B2 level and its downstream

proteins (42). The result showed that BBR inhibits the BC

survival and migration via targeting ephrin-B2 (42).
LSD1

Histone lysine demethylase 1 (LSD1) is a histone

demethylase selectively eliminating the methyl group from

histone H3 at H3K4me1/2 and H3K9me1/2 and modulating

the transcriptional repression and activation of downstream
Frontiers in Oncology 03
genes (43, 44). Meanwhile, BC metastasis is associated with

the phosphorylation of LSD1 (45). Several studies demonstrated

that the stability and degradation of LSD1 could be regulated by

ubiquitination and phosphorylation modifications (46). To be

specific, reducing ubiquitination levels by deubiquitinase or

raising phosphorylation of LSD1 by kinases could inhibit its

degradation and increase its stability via reducing its

ubiquitination level (47). Given that LSD1 could also function

as a coactivator via demethylating H3K9me1/2 and activating

transcription by interacting with androgen receptor (AR) and

ER, two receptors that mediated the BC progression (48, 49), it is

identified as a promising target for BC therapy (49). As a mainly

bioactive product of C. chinensis Franch, BBR has exhibited its

anticancer activity via directly binding to LSD1, inducing the

accumulation H3K9me1/2 and suppressing downstream

suppressor genes in BC (50–52). Hence, BBR might exhibit its

anticancer effect via partially targeting LSD1 in BC.
DNA, TATA box, and poly(A) tails

The nitrogen atom at the 7-position of BBR has a positive

charge and this exceptional structure could strongly bind with

DNA sequences with negative charge (Figure 1) (53, 54). The

binding between BBR and DNA would lead to DNA damage in

cancer cells via regulating the cellular DNA topoisomerase

activity (55). Caspase-3 and caspase-9 are proteolytic enzymes

that are activated by apoptotic factors, including some target

cellular enzymes such as Fas ligand (FasL). BBR could induce the

expressions of these apoptotic factors to activate caspase-9 and

caspase-3 (56). DNA damage response (DDR) induces cell cycle

arrest and apoptosis through the caspase-9 and caspase-3 or Fas/

FasL signaling pathway when DNA damage cannot be

successfully repaired in time (55, 57) and promotes autophagy

to demonstrate its qualities to suppress tumor (58, 59).

Therefore, BBR-mediated DDR of cancer cells is also a

prospective protein treatment.

Additionally, TATA box is an element that takes part in the

process of gene transcription (60). Some results indicated that

DNA TATA box and mRNA poly (A) tails played a vital part in

the modulation of gene expression, and they are the first and

second mainly important targets of BBR to regulate gene

transcript (61). In the mechanism, the binding between BBR

and TATA box/mRNA poly(A) tails would alter the spatial

conformation of these DNA/RNA sequences (60, 61), regulate

the transcription of downstream genes, and thus inhibit the BC

progression (62). Thus, TATA boxes and poly(A) tails also

partially contribute to the anti-BC activity of BBR.
MicroRNA (miR)-214-3p and SCT

MiR-214-3p is a tumor suppressor functioning by inducing

cell apoptosis and G2/M arrest of BC cells (63). Secretin (SCT) is
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an oncogene with an anti-proliferative effect in normal cells but a

proliferation-stimulating activity in cancer cells (64). BBR was

also found to exhibit its antitumor effects in MCF-7 and MDA-

MB-231 BC cells via upregulating tumor suppressor microRNA

(miR)-214-3p and reducing SCT level (63, 64). Further study

showed that BBR exhibited its anti-BC activities via directly

binding to targeted binding sites within both miR-214-3p and

SCT (65). In addition, BBR could raise the miR-214-3p

expression and reduce SCT level via b-catenin–mediated

inactivation of telomerase activity (66).
The BBR-mediated pathways of
against BC

BBR suppresses proliferation and
migration of BC cells via ZO-1 mediated
Wnt/b-catenin signaling pathway

Zonula occludence-1 (ZO-1) is a key molecule tightly attached

to other proteins, such as Wnt/b-catenin. Wnt/b-catenin is a

membrane-linked protein that could be activated via dissociating

from the membrane. The activation of Wnt/b-catenin signaling

promotes tumor cell proliferation and migration (67). ZO-1 was

found to be activated by BBR, which lead to enhancing the binding

of ZO-1 and the cyclin-dependent kinase 4 (CDK4) and reducing

CDK4 entry into the nucleus (68, 69). Then, the freeWnt/b-catenin
level was also downregulated, which suppresses cancer cell

proliferation via induced cell cycle arrest (70, 71). The present

study also demonstrated that BBR inhibited the proliferation and

migration of BC cells partially via inactivating the ZO-1–mediated

Wnt/b-catenin signaling pathway.
BBR induced cell cycle arrest of BC cells
through upregulating p21 and p27

P21 and p27 are the key CDK inhibitors (CDKIs) that induce

apoptosis and cell cycle arrest in varieties of cells (72). The

increase of mRNA and protein expression levels of p21 and p27

is beneficial to inhibit the expressions of diverse cyclins

including cyclin D1, cyclin E, cyclin K2, cyclin K4, and cyclin

K6 (73). The CDKIs would modulate cell cycle arrest in the G1

phase and induce apoptosis in different cancer cells.

Several studies proved that BBR could modulate different

tumor suppressor genes (including p21 and p27) to induce

cytotoxicity in BC cells, and reducing the two protein levels

strongly clocks up the growth of different tumor types including

BC (73). Further study indicated that BBR could induce G1

phase arrest and thus inhibit cell proliferation via upregulating

p21 and p27 (74).
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BBR sensitizes chemical agents and
overcomes drug resistance of BC cells
via activating AMPK signaling

Adenosine monophosphate–activated kinase (AMPK), a

sensor of energy status, plays an extremely primary part in

cellular energy homeostasis and regulates the drug resistance of

BC (75, 76). It is activated by hypoxia to compensate for the

oxygen reduced by mitochondria respiration (77). Hypoxia-

inducible factor-1alpha (HIF-1a), the primary regulator of cell

response to hypoxia (78, 79), has the function to increase

proliferation and drug resistance of some cancers including BC

via regulating metabolic enzymes (80, 81). P-glycoprotein (P-gp)

is a critical obstacle to reduce drug accumulation in cancer

eradication (82). As a tumor suppressor protein (83), p53 can be

activated by being modified by the phosphorylation of multiple

protein kinases at multiple sites (84). Interestingly, HIF-1a, P-
gp, and p53 are downstream genes of AMPK signaling, and BBR

exhibits its anti-BC activity via AMPK-mediated reducing level

of HIF-1a and P-gp and phosphorylating p53 (85, 86).

Doxorubicin (DOX) is the most frequently used chemical

agent to treat BC in clinic. However, its effectiveness is often

reduced in a hypoxic environment (87). Pan et al. found that the

activation of AMPK signaling was responsible for lowering the

sensitivity of BC cells to DOX. To be specific, AMPK was

activated by a hypoxic environment, which upregulated the

phosphorylated AMPK (p-AMPK) and HIF-1a. Then, HIF-1a
raised P-gp level and thus improved the DOX sensitivity of BC

cells. BBR also could overcome DOX resistance via AMPK in a

time- and dose-dependent manner. Further study showed that

low-dose BBR enhanced cytotoxicity and sensitized DOX

sensitivity in vivo via inhibiting the AMPK pathway, whereas

high-dose BBR would restrain the activation of AMPK and affect

HIF-1a downregulation, which induces p53 activation that led

to cell death and apoptosis (88). In conclusion, BBR enhanced

sensitivity to chemical agents and drug resistance of BC mainly

through activating AMPK signaling cascades (89).
BBR inhibits TPA-induced PKC-a
signaling and thus reduces the levels of
MMP-1 and MMP-9 in BC

Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)

was found to promote tumor invasion and migration in BC (90).

Matrix metalloproteinases (MMPs) are key enzymes that could

regulate the cellular microenvironment (91). Matrix

metalloproteinase-1 (MMP-1) is the principal LCC-secreted

factor that enhances the tumor-promoting traits (92). Matrix

metalloproteinase-9 (MMP-9) is an enzyme which belongs to the

MMP family, and its activity was related with different stages of

carcinoma progression (93, 94). Several studies showed that the
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MMP-9 level is positively correlated with a higher tumor grade

in BC tissue (95), and TPA mediated tumor invasion and

migration by upregulating expression of MMP-1 and MMP-9

in BC cells (96, 97). Protein kinases C (PKCs) are a set of serine/

threonine kinases involved in the tumor progression in BC (98).

Protein kinase C (PKC-a) can be activated by TPA and promote

MMP-1 and MMP-9 expressions (99). Meanwhile, it may be

elevated in patients with lower ER levels. Further studies

indicated that the TPA dose-dependently enhanced the

expression levels of MMP-1 and MMP-9 via inducing

phosphorylation of PKC-a (99), and BBR administration

could suppress TPA-induced proliferation and formation of

BC cells via blocking PKC-a/MMP signaling (100, 101). The

result demonstrated that BBR also exhibited its anticancer

activity via inhibiting the abnormal expressions of MMP-1 and

MMP-9 during invasion and proliferation of cancer (102, 103).

Here, PKC-a/MMPs signing may be also a potential signaling

that mediated the anticancer activity of BBR.
BBR-based combined strategies for
BC treatment

BBR and curcumin

Curcumin (CUR) is a natural phenolic product distilled

from the rhizome of Curcuma Longa L. and its main functions

are similar to BBR (104). Both natural products are famous for

their multiple pharmacological properties such as anticancer and

anti-inflammation activities (105, 106). Many studies revealed

that CUR and BBR exhibited outstanding anticancer properties

with low toxicity in multiple cancer types (69, 107). Apoptosis

and autophagy have been shown to interrelate by many complex

mechanisms (108). Clinical analysis revealed that CUR and BBR

have the pharmacological capability to mediate autophagic and

apoptosis in multiple cancer cells via diverse signaling pathways,

such as p-Jun N-terminal kinase (JNK) signaling, Beclin1/Bcl-2

signaling, and ERK signaling.

JNK is found to mediate autophagy in response to cell

stresses in cellulo (109). Beclin1, a protein only consisting of

Bcl-2 homology 3 domain, is also a vital initiator of autophagy

(110). Bcl-2 and Bax belong to Bcl-2 family proteins. Bcl-2

protein is anti-apoptotic, whereas Bax protein is pro-apoptotic

(111). Extracellular signal–regulated protein kinases (EKRs) play

important roles in cell proliferation and apoptosis, and they

could block apoptotic and induce proliferation by enhancing the

expressions of pro-survival genes and reducing associated genes,

such as Bcl-2 and Bax (112). Mounting evidence showed that the

JNK activation increased phosphorylated Bcl-2 level and

dissociation of the Beclin1/Bcl-2 complex (109). Then, the

dissociated Beclin1 would induce autophagy. He et al.

confirmed that combined therapy using CUR and BBR
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increases phosphorylated Bcl-2 via activating the JNK pathway

(108, 113, 114).

ERK is a signaling regulator modulating the proliferation,

growth, and survival in most of cell lines (114). However, its

activation is also found to mediate cell death in some cell types

(115). CUR or BBR treated alone has been found to activate ERK

signaling via phosphorylating ERK in many cancer cells,

whereas their combined use significantly enhanced ERK

phosphorylation and then raised Bax level and reduced the

expression of Bcl-2. Meanwhile, the upregulated Bax/Bcl-2

ratio would inhibit the proliferation of cancer cells via

inducing apoptosis (11).

All the results strongly suggested that the combined

treatment using BBR and CUR significantly improved

anticancer efficacy via inducing autophagy and apoptosis of

BC cells through the JNK/Beclin1/Bcl-2 pathway and ERK

signaling. This combined strategy may be a promising

medicine to treat BC.
BBR and emodin

Emodin (EMO) is a natural anthraquinone compound

extracted from several medicinal plants and it has been found

to exhibit anticancer effects in BC by regulating several signaling

pathways (116). SIK3 belongs to the AMP-activated protein

kinase family, and it is required for the mTOR/AKT signaling

pathway to mediate the proliferation of BC cells. Serine/

threonine kinase (AKT), a regulator modulating the cell cycle

progression and survival, is also a factor involved in anticancer

effect in BC cells (117). The activation of AKT signaling

contributes to tumor progression and drug resistance in

various types of cancer (118). The mammalian target of

rapamycin (mTOR), a highly conserved kinase, is an

important regulatory factor to control translation and

proliferation in different cancer cell l ines. SIK3 is

overexpressed and enhances the phosphorylation of AKT in

the BC. Then, the phosphorylated AKT is activated, promotes

G1/S cell cycle progression, and finally leads to cell proliferation

and survival of cancer cells (119). BBR and EMO were identified

as potent SIK3 inhibitors in BC via directly binding to the ATP

binding pocket of SIK3 by hydrogens. One of the possible

mechanisms was that BBR and EMO inhibited the expression

of SIK3 via inactivating the AKT signaling pathway and

inducing G1/S cell cycle arrest and apoptosis of BC cells (30).

In addition, some results revealed that the combined therapy

us ing BBR and EMO sign ificant ly decreased the

phosphorylation of AKT compared with either a single

treatment in BC cells (35). It is worth mentioning that the

combined therapy did not affect the growth of non-tumorigenic

cells, suggesting that this strategy may be an effective method to

treat BC.
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Cancer cells consume a lot of glucose to maintain their

persistent proliferation, and mTOR-induced aerobic glycolysis

provides the source for this process (120). mTOR is also a kinase

regulated by SIK3 and plays crucial roles in BC proliferation.

Phosphorylation of p70 S6 kinase 1 (p-S6K1) and phosphorylated

E4 binding protein 1 (p4EBP1) are two downstream targets of

mTOR, and SIK3 regulates the mTOR signalling pathway and

promotes the proliferation of BC cells via promoting

phosphorylation of them at residues T389 and T37/46,

respectively (63, 121). Meanwhile, EMO and BBR alone or

combined administration could inhibit mTOR signaling and

growth cell cycle arrest, and apoptosis of BC cells via

downregulating phosphorylation levels of p-S6K1 (T389) and

p4EBP1(T37/46) (35). Current results suggested that the

combination of BBR and EMO inhibits proliferation and

growth in BC cells. To sum up, BBR and EMO suppress

growth and proliferation through the inactivation of SIK3-

induced mTOR and AKT signaling pathways.
Conclusions

BBR has exhibited distinct pharmacological activities in

different diseases. In this mini-review, the source and

biological function of BBR have been summarized, and the

anticancer effects of BBR on BC and its underline mechanisms

have been also systematically described. The review

demonstrated that BBR exhibited its anti-BC effects through

binding to the effector proteins/miRNA/DNA regulatory

sequences and thus inhibiting multiple cancer-related signaling

(Figure 1). Notably, there are several reported molecular targets

for BBR in other cancers such as receptor retinoid X receptor

alpha (RXRa) (71), protein tyrosine phosphatase 1B (PTP1B)

(122), TNF receptor–associated factor 6 (TRAF6) (123), and

angiotensin-converting enzyme (ACE), and these proteins also

play important roles in BC; further studies are necessary to
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investigate the roles of these targets in BBR-mediated anti-BC

effects. BBR not only could directly bind to oncogenes ephrin-

B2, SIK3, and LSD1 and inactivated their functions in BC but

also modulated the transcription of some cancer-related genes

via directly binding to their cis-acting elements. In addition, BBR

has been found to inhibit cancer cell proliferation and invasion

via several signaling pathways (Table 1).

Although BBR exhibited potential anti-BC activity in

preclinical studies, there are several predicaments to overcome

before it was been advanced into clinical treatment against BC.

Firstly, several studies showed that BBR exhibited low toxicity to

healthy cells and human beings (126, 127). It could also lead to

some adverse events, such as constipation and nausea (128, 129).

In addition, some patients injected with BBR through

intramuscular and intravenous had presented allergic reactions

(130). Moreover, the poor oral bioavailability and low water

solubility of BBR could reduce its anticancer activities (131).

Currently, several strategies have been introduced to improve

the efficacy of BBR against BC and reduce side effects in vivo.

Combined therapy using BBR and other natural compounds is

proved to significantly improve the anti-BC activity of BBR via

inducing more effective apoptosis and reducing the dose of BBR

(65, 103). Apart from combined therapy, conjugating BBR with

other chemical agents is also an efficient strategy to improve the

anticancer activity of BBR for BC therapy (132, 133). Qin et al.

found that a conjugator via linker BBR to platinum (II) complex

significantly improved the in vitro and in vivo anti-BC activity

(134). In addition, drug delivery using nanocarriers is widely

used to improve cell penetration, biocompatibility, and in vivo

efficacy, and this method is also an applicant for improving

bioavailability and the efficacy of BBR against BC (135–137).

Moreover, chemical modification is also a potent strategy to

improve cell penetration, and water soluble anti-tumor activity

of BBR and several BBR derivatives have been designed and

exhibited better anti-BC efficacy than their lead compound BBR

(132, 138–141).
TABLE 1 The reported pathways and molecular targets regulated by BBR in different BC cell lines.

Dosage Function Type of cell lines Study
model

References

1, 2, and 4 mg/kg BBR act directly on the poly(A) tail The male mice In vitro (124)

MDA-MB-231: 0, 6.25, 12.5, and 25 µM; MDA-MB-
468: 0, 3, 6, and 12 µM; MDA-MB-453: 0, 2.5, 5, and
10 µM

Induce cell cycle arrestReduce the expression of
cyclin D and Cyclin E

MDA-MB-231, MDA-MB-468,
MDA-MB-453, and BT-549
cells

In vitro (125)

100 mM Suppress the expressions of MMP-1 and MMP-9 MCF-7 and MDA-MB231 In vitro (99)

BBR: 0–40 µMEMO: 0–40 µM BBR binds with SIK3 to inhibit SIK3 activityInduce
cell cycle arrest at G1/S cell cycle arrest and
apoptosis

MCF-7, T47D, MDA-MB-468,
and MDA-MB-231 cells

In vitro (35)

5, 10, and 20 mmol/L Inhibit the AMPK pathway to induces cell death
and apoptosis

MCF-7/MDR cells In vitro (88)

25 and 50 µM Upregulate miR-214-3pReduce SCT MCF-7 and MDAMB-231 cells In vitro (63)

0–16mg/ml Reduce nuclear CDK4Downregulate Wnt/b MCF-7 cells In vitro (68)
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In conclusion, although some studies showed that BBR

induced apoptosis of some BC cell lines and sensitized BC

cells to chemotherapy via interfering with some pathways, the

detailed mechanisms of the BBR are unclear, and more potential

anti-tumor pathways or targets are yet to clarify due to the

heterogeneity of BC. Further research would make a thorough

inquiry regarding the clinical effect of BBR and whether the

combined therapy/nanocarriers/chemical modifications could

show a more valid effect on patients and reduce the side

effects. Meanwhile, it is imperative to consider the treatment

cycle and degree of BBR in clinic. In short, further studies are

warranted to define the therapeutic role of BBR as an anticancer

drug in BC.
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