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Lactobacillus crispatus represses vaginolysin expression by BV
associated Gardnerella vaginalis and reduces cell cytotoxicity

Joana Castro a, b, 1, Ana Paula Martins a, 1, Maria Elisa Rodrigues a, Nuno Cerca a, *

a Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Ros�ario Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga,
Portugal
b Instituto de Ciências Biom�edicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
a r t i c l e i n f o

Article history:
Received 26 October 2017
Received in revised form
29 January 2018
Accepted 31 January 2018
Available online 7 February 2018

Handling Editor: Andrew B Onderdonk

Keywords:
Bacterial vaginosis
G. vaginalis
L. crispatus
Vaginolysin
Sialidase
* Corresponding author. Centre of Biological Engin
Research in Biofilms Ros�ario Oliveira (LIBRO) , Univ
Gualtar, 4710-057 Braga, Portugal.

E-mail address: nunocerca@ceb.uminho.pt (N. Cer
1 J. C. and A. P. M. contributed equally to this work

https://doi.org/10.1016/j.anaerobe.2018.01.014
1075-9964/© 2018 Elsevier Ltd. All rights reserved.
a b s t r a c t

Using a chemically-defined medium simulating genital tract secretions, we have shown that pre-
adhering Lactobacillus crispatus to Hela epithelial cells reduced cytotoxicity caused by Gardnerella vagi-
nalis. This effect was associated to the expression of vaginolysin and was specific to L. crispatus inter-
ference, as other vaginal facultative anaerobes had no protective effect.

© 2018 Elsevier Ltd. All rights reserved.
Lactobacillus crispatus is an important urogenital species that is
routinely found in the vagina of healthy women [1,2], contributing
to the maintenance of normal vaginal microbiota, while its absence
has been associated with a range of vaginal abnormalities, espe-
cially bacterial vaginosis (BV) [3,4]. BV is the leading vaginal dis-
order in women of reproductive age worldwide and it has been
associated with serious public health consequences, including
pelvic inflammatory disease [5], acquisition and transmission of the
HIV virus [6] and preterm birth [7]. It has been proposed that
Gardnerella vaginalis, a facultative anaerobe, is the pathogen
responsible for the initiation of BV [8,9]. This bacteria is capable of
adhering to vaginal cells, establish biofilms and induce cytotoxicity
on vaginal epithelial cells [10,11]. However, despite being the most
prevalent and virulent species found in BV, G. vaginalis can also be a
part of the vaginal microbiota in healthy women [12,13]. Genetic
differences among G. vaginalis strains may underlie the diverse
pathological features and outcomes that have been associated with
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.

this species, raising the possibility that distinct pathogenic and
non-pathogenic strains or even subspecies exist [14e18]. The
G. vaginalis diversity might represent a critical turning point in
clarifying ecological interactions and virulence factors contributing
to symptoms and sequelae of BV [19]. Therefore, understanding the
interactions between beneficial lactobacilli and G. vaginalis is of
extreme importance to help unravel the pathogenesis and pro-
gression of this condition.

This study aimed to investigatewhether the BV-positive and BV-
negative G. vaginalis strains differ in their abilities to interact with a
cervical epithelial (HeLa) cell monolayer pre-treated with
L. crispatus, using a functional cytotoxicity model, which represents
a significant improvement over our previous study [10], since we
used a medium simulating genital tract secretions (mGTS) [20] and
epithelial cells were previously covered with L. crispatus,
mimicking a normal vaginal ecosystem. First, bacterial suspensions
of three BV-positive G. vaginalis strains (UM067, NCBI accession
number: KP996675.1; UM121, NCBI: KP996681.1; UM241, NCBI:
KP996683.1), three BV-negative G. vaginalis strains (UM016, NCBI:
KP996686.1; UM085, NCBI: KP996679.1; UM131, NCBI:
KP996676.1) and L. crispatus EX533959VC06 were grown in mGTS
for 48 h at 37 �C with 10% CO2 (Shel Lab, Cornelius Oregon, USA)
[20]. For the cytotoxicity assays, L. crispatus suspension, adjusted to
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1� 107 cfu/mL, was added to a monolayer of HeLa cells for 3 h.
Afterwards, blind bacterial suspensions, adjusted to the same
concentration, were added to a HeLa cells monolayer pre-adhered
with L. crispatus for 3 h. Additional controls were conducted to
analyze whether L. crispatus effects reflect a specie-dependent
response or whether other vaginal associated species can exhibit
similar effects. Thus, herein, we included the following bacterial
species as controls: Corynebacterium tuberculostearicum UM137Ct2
(NCBI: KT805279); Staphylococcus warnerii UM224Sw (NCBI:
KT923488); and Nosocomiicoccus ampullae UM121Na (NCBI:
KT805272), due to their low cytotoxicity and adhesion levels
similar to L. crispatus [21]. Cytotoxicity was scored on a 0 to 5 scale
[11]. Numeric scores were assigned as follows: 0, no difference
between the test and the control; 1, 25% of the cells were rounded;
2, 25e50% of the cells were rounded; 3, 50% of the cells were
rounded with partial monolayer disruption; 4, 50% cells were
rounded, with extensive disruption of the monolayer; and 5,
complete disruption or absence of the monolayer.

Furthermore, we also quantified the expression levels of vagi-
nolysin (vly) and sialidase (sld) transcripts in three different con-
ditions: G. vaginalis planktonic cells (pre-infection) (i); after
G. vaginalis infection on amonolayer of HeLa cells (post-infection in
HeLa) (ii); and after G. vaginalis infection on a monolayer of HeLa
cells pre-treated with L. crispatus (post-infection in HeLa with Lc)
(iii). Briefly, total RNA of these three different conditions was
extracted using an ExtractME RNA Bacteria & Yeast kit (Blirt S.A.,
Poland) with minor changes, as optimized before [22]. Quantitative
PCR (qPCR) was prepared by mixing together 5 mL of iQ SYBR green
supermix (Bio-Rad, Hercules, CA, USA), 2 mL of 1:100 diluted cDNA,
0.5 mL of 5 mM Forward and Reverse primes and water up to 10 mL.
Primer sequences for target genes are listed in our previous studies,
as follows: 16sRNA (Fw and Rv) [23]; vly (Fw2 and Rv2) and sld (Fw1
and Rv1) [10]. Normalized gene expression was determined by
using the delta Ct method (EDCt), a variation of the Livak method,
where DCt¼ Ct (reference gene) - Ct (target gene) and E stands for
the reaction efficiency experimentally determined. At least three
biologic replicates of each condition were performed. The data
were analyzed using the t-test or A-NOVA with the statistical
Fig. 1. Differential cytotoxicity profile of G. vaginalis (Gv) isolated from women with BV (B
positive and BV-negative Gv strains, in two different conditions: Gv infection on a monola
score after Gv infection on a monolayer of HeLa cells pre-coated with Lc or with other vagin
*Values are significantly different between the 2 groups of Gv strains under the same cond
software package GraphPad Prism version 6 (GraphPad Software
Inc., La Jolla, CA, USA). P-values of less than 0.05 were considered
significant.

Our results highlighted that BV-positive G. vaginalis strains were
able to induce more extensive damages on the HeLa monolayer
than BV-negative strains (Fig. 1a), supporting our previous data
[10]. Remarkably, when L. crispatus was pre-adhered to HeLa,
cytotoxicity effect of all G. vaginalis was significantly reduced
(p< 0.05). A possible explanation for this fact could be that
L. crispatus is blocking G. vaginalis adherence [24], indicating that
competitive exclusion of this species could be a key role protecting
the vagina from invading pathogens [25].

Trying to unravel whether this response was L. crispatus-spe-
cific, we pre-coated the HeLa monolayer with C. tuberculostearicum,
N. ampullae or S. warnerii. Curiously, we verified that the selected
bacterial species were not able to reduce the cytopathogenic al-
terations caused by G. vaginalis on the epithelial monolayer
(Fig. 1b). This supports the specific role of L. crispatus in reducing
G. vaginalis cytotoxicity. Recent studies have shown that cytopro-
tective effect of L. crispatus seems to be related with stimulation of
immune response [26], reduction of cell apoptosis [27], or changes
on the physical properties of the plasma membrane in HeLa cells
[28].

The different cytotoxic activity between BV-negative and BV-
positive isolates could be due to a pre-forming toxin produced by
G. vaginalis, vaginolysin, which is able to induce cell death and is
thus a virulence factor [29]. Furthermore, G. vaginalis virulence has
also been associated to sialidase [30]. This enzyme is known to
facilitate the destruction of the protective mucus layer on the
vaginal epithelium [30]. Therefore, to compare the cytotoxicity ef-
fect and expression levels of vly and sld transcripts between the two
groups of strains, we used a BV-positive G. vaginalis UM241 and a
BV-negative G. vaginalis UM131 strain, which carry both genes of
interest (Castro et al., 2015). Our results revealed differences in the
expression of both genes, being the transcript levels of vly (Fig. 2a)
higher when compared to the transcript levels of sld (Fig. 2b),
similar to what was verified in our previous report [10].

Interestingly, our data also revealed that after post-infection by
V-positive strains) and without BV (BV-negative strains). a) Cytotoxicity score of BV-
yer of HeLa cells and on a monolayer pre-coated with L. crispatus (Lc); b) cytotoxicity
al-associated species: C. tuberculostearicum (Ct), N. ampullae (Na) and S. warnerii (Sw).
itions (one-way ANOVA, p < 0.05).



Fig. 2. Differential transcriptomic profile of G. vaginalis (Gv) isolated from women with BV (BV-positive strain) and without BV (BV-negative strain). a) Expression of vaginolysin
(vly) and; b) sialidase (sld) genes by Gv isolates. Transcript levels within Gv planktonic cells (pre-infection), after Gv infection on a monolayer of HeLa cells (post-infection in HeLa)
and after Gv infection on a monolayer of HeLa pre-treated with L. crispatus (post-infection in HeLa with Lc) were quantified. Results are expressed as normalized expression in
relation to 16S rRNA and represented as mean ± SEM. **A specific condition was significantly different in terms of gene expression between a BV-positive and a BV-negative strain
(T-test, p < 0.05).
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a BV-positive strain, transcript levels of both genes were signifi-
cantly higher than in pre-infection (Fig. 2a and b). Remarkably, pre-
coating the HeLa monolayer with L. crispatus caused a repression of
expression in 2.58-fold and 1.89-fold for vly and sld transcripts,
respectively. Regarding the BV-negative strain, the same tendency
was observed for vly expression between the post- and pre-
infection conditions (Fig. 2a). However, no differences were
detected in sld expression (Fig. 2b). Surprisingly, our findings sug-
gest that no direct association seems to exist between vly and sld
expression by a BV-negative group and the presence of L. crispatus,
despite the ability of this species to repress the cytotoxic activity of
both G. vaginalis groups.

Taking in consideration our novel findings and our previous
observations [10,24] we underline the importance of L. crispatus,
since it seems to possess some factors that can trigger protective
mechanisms against BV-positive G. vaginalis strains [25]. A limita-
tion of our study was the use of only a representative Lactobacillus
species, correlated with healthy vaginal microflora, and we did not
explore how other lactobacilli would interact with either
G. vaginalis or other bacterial species found in BV. However, there is
no doubt that a refined genomic characterization of the G. vaginalis
strains might allow a better knowledge of the molecular mecha-
nisms behind the different patterns of cytotoxicity.
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