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Context: Probiotics show promise in preventing and managing food allergies, but 
the impact of supplementation during pregnancy or infancy on children’s allergies 
and gut microbiota remains unclear. Objective: This study aimed to assess the 
effects of maternal or infant probiotic supplementation on food allergy risk and 
explore the role of gut microbiota. Data Sources: A systematic search of data
bases (PubMed, Cochrane Library, Embase, and Medline) identified 37 relevant 
studies until May 20, 2023. Data Extraction: Two independent reviewers extracted 
data, including probiotics intervention details, gut microbiota analysis, and food 
allergy information. Data Analysis: Probiotics supplementation during pregnancy 
and infancy reduced the risk of total food allergy (relative risk [RR], 0.79; 95% CI, 
0.63-0.99), cow-milk allergy (RR, 0.51; 95% CI, 0.29-0.88), and egg allergy (RR, 0.57; 
95% CI, 0.39-0.84). Infancy-only supplementation lowered cow-milk allergy risk 
(RR, 0.69; 95% CI, 0.49-0.96), while pregnancy-only had no discernible effect. 
Benefits were observed with over 2 probiotic species, and a daily increase of 
1.8� 109 colony-forming units during pregnancy and infancy correlated with a 4% 
reduction in food allergy risk. Children with food allergies had distinct gut micro
biota profiles, evolving with age. Conclusions: Probiotics supplementation during 
pregnancy and infancy reduces food allergy risk and correlates with age-related 
changes in gut microbial composition in children.
Systematic Review Registration: PROSPERO registration no. CRD42023425988.
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INTRODUCTION

Food allergies are on the rise and have affected millions 

of people worldwide.1,2 The global incidence of food 

allergies is approximately 10% in infants and 4% to 5% 

in older children and young adolescents.3 The Wayne 

County Health, Environment, Allergy, and Asthma 

Longitudinal Study (WHEALS) birth cohort study indi

cated that the main immunoglobulin (Ig) E–mediated 

food allergens in adolescents are milk, eggs, and pea

nuts.4 IgE-mediated food allergy refers to the produc

tion of food allergen–specific IgE on first exposure, and 

upon re-exposure to the allergen, specific IgE binds to 

Fc-epsilon receptor I (FceRI) on mast cells, releasing 
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mediators and causing acute symptoms.5 Food-allergic 

symptoms range from skin irritation to life-threatening 

anaphylaxis.6 Hence, food allergies have become a 

global public health concern.

Avoidance of allergic foods, food-processing desen

sitization, and oral immunotherapy are the major treat

ment strategies for food allergies. However, relevant 

dietary exposures, such as probiotics supplementation 

during pregnancy or after birth, can influence the devel

opment of food allergies.7 The potential role of probiotics 

in influencing the immune system as an innovative strat

egy to combat food allergies has attracted a high degree 

of attention. One randomized controlled trial (RCT) 

indicated that maternal probiotics supplementation dur

ing pregnancy can prevent egg allergy.7 However, 

another study suggested that no benefit of probiotics sup

plementation during infancy has been shown.8 Factors 

such as the period (during pregnancy or infancy), dura

tion (short or long term), dose, and type of probiotics 

may impact the effectiveness of probiotics supplementa

tion. However, no relevant analyses have been reported. 

Additionally, variations in the microbial environment 

may affect the risk of food allergies in offspring receiving 

probiotics support during pregnancy or infancy.

The development of the fetal immune system 

depends on the environmental exposures, ranging from 

the prenatal placental environment to postnatal condi

tions, especially during the first trimester of life.9,10 The 

gut microbiota, skin, and vasculature play an important 

role in the development of the immune system during 

early life.9 Gut microbiota undergo changes and matu

ration as individuals age. Gut microbial maturation in 

healthy infants undergoes a transition from Escherichia 

coli dominated, to Bifidobacterium bifidum dominated, 

eventually to Bacteroidetes dominated.11 However, the 

gut microbiota of children with food allergies differ 

from those of healthy children.12 Meanwhile, the spec

trum of microbial colonization with age in children 

with food allergies is not clear. If the delay in matura

tion of the immune system is partly due to microbiota 

imbalance, it is then particularly important to under

stand age-specific microbial alterations in food-allergic 

infants, providing insights for early precision preven

tion and treatment of food allergies.

Recent reviews provided summaries of probiotics’ 

effects on allergic diseases; however, they did not 

include food allergies and did not separately address dif

ferences in supplementation during pregnancy or 

infancy.13 The objective of this meta-analysis and sys

tematic review was to evaluate the effects of probiotics 

supplementation during pregnancy or infancy on over

all food, cow-milk, egg, and peanut allergies in children, 

and to synthesize the specific microbial profiles of chil

dren during each period with food allergies.

METHODS

Data sources and searches

PubMed, Cochrane Library, Embase, and Medline were 

searched for studies related to food allergies, probiotics, 

and gut microbiota published until May 20, 2023. The 

details of the search strategy used for all databases are 

available in Material S1 (please see the Supporting 

Information online). The study protocol was registered 

prospectively in PROSPERO (https://www.crd.york.ac. 

uk/prospero/) with the registration number 

CRD42023425988. This study adhered to the Preferred 

Reporting Items for Systematic Reviews and Meta- 

Analyses (PRISMA) reporting guidelines (see Table S4 

in the Supporting Information online).

Eligibility criteria

The inclusion criteria for this meta-analysis were based 

on the Participants, Interventions, Comparisons, 

Outcomes, and Study design (PICOS) framework 

(Tables 1 and 2).

Study selection and data extraction

Records obtained from the searches were downloaded 

and exported to EndNote X9 (Clarivate Analytics, 

London, UK) for de-duplication. Two independent 

reviewers performed 2-round screening (titles and 

abstracts in round 1 and full-text eligibility in round 2). 

Extracted data consisted of publication details, study 

design characteristics, probiotics intervention details, 

stool collection, and gut microbiota analysis. Primary 

outcomes of interest included the occurrence and 

Table 1 PICOS criteria for inclusion of studies of probi
otics supplementation on food allergies
Parameter Inclusion criterion

Participants Human studies
Interventions Probiotics supplementation during  

pregnancy or infancy
Comparisons With or without probiotics supplementation
Outcomes Occurrence or tolerance of food allergies
Study design Randomized controlled trial

Table 2 PICOS criteria for inclusion of studies of gut 
microbiota
Parameter Inclusion criterion

Participants Human studies
Interventions Gut microbiota analysis
Comparisons Food allergic children or healthy children
Outcomes Gut microbial diversity
Study design Case-control study
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tolerance of food allergy during pregnancy or infancy, 

composition of gut microbiota (alpha and beta diver

sity), and relative abundance at the phylum, order, fam

ily, and genus levels. Discrepancies regarding study 

inclusion and data interpretation were resolved by con

sensus through group discussions.

Quality assessment

Randomized controlled trials of probiotics supplementa

tion on food allergy were evaluated for risk of bias using 

modified versions of the Cochrane Collaboration Risk of 

Bias tool.14 The Risk of Bias tool was used to assess the 

randomization process, allocation concealment, blinding 

of participants and personnel, blinding of outcome assess

ment, incomplete outcome data, selective reporting 

bias, and other biases. The Newcastle–Ottawa Quality 

Assessment Scale (NOS) was used to evaluate case-control 

studies of gut microbiota.15 The NOS was assessed in 3 

categories: selection, comparability, and exposure. No 

studies were excluded based on quality concerns. The 

detailed assessment is available in Tables S2 and S3 (please 

see the Supporting Information online).

Statistical analysis

The main effect data were analyzed using Stata (version 

11; StataCorp, College Station, TX, USA) and RevMan 

(version 5). Heterogeneity of the studies was quantified 

using I2 statistics. The fixed-effects model was adopted 

with low heterogeneity (I2 <50%). Otherwise, a 

random-effects model was used.

Studies on food allergies were categorized based on 

probiotics supplementation during pregnancy or infancy. 

Subgroup analysis was performed based on follow-up 

duration, region, and probiotics type. Sensitivity analysis 

was performed to investigate the influence of each study 

on the overall analysis. The potential nonlinear effects of 

probiotics dosage and follow-up duration were examined 

using a restricted cubic spline model.

Funnel plots and Begg’s and Egger’s tests were utilized 

to assess potential publication bias. A heatmap of the gut 

microbiota was generated using the R package pheatmap 

(R Foundation for Statistical Computing, Vienna, Austria). 

Statistical significance was set at P < 0.05.

RESULTS

Study characteristics

A total of 37 studies were included after screening, with 

17 trials for probiotics supplementation on food allergy 

including 4 trials also for probiotics supplementation 

on gut microbiota, 3 trials for probiotics 

supplementation on tolerance towards food, and 17 

case-control studies for gut microbiota (Fig. 1). The 20 

RCTs captured 4597 participants in the probiotics sup

plementation group and 4470 participants in the control 

group. Seven studies7,16–21 for probiotics supplementa

tion on food allergy were conducted during pregnancy 

and infancy, 1 study22 on pregnancy alone, and 9 stud

ies8,23–30 on infants alone after birth; 3 studies were con

ducted for probiotics supplementation during infancy 

on tolerance towards food.31–33 Twelve (60.0%), 6 

(30.0%), and 2 (10.0%) studies were conducted in 

Europe, Oceania, and Asia, respectively. The 17 trials 

on the risk food allergy included 15 studies on total 

food allergy, 10 studies on cow- milk allergy, 8 studies 

on egg allergy, and 6 studies on peanut allergy (Table 3).

Seventeen studies on gut microbiota included 

706 patients with food allergies and 913 healthy con

trols.34–50 They included 7 studies in Asia, 7 in America, 2 

in Europe, and 1 in Oceania. No difference in sex was 

found between the food allergy and control groups. The 

ages of the participants ranged from 0 to 18 years (Table 4). 

The collection, preservation, and extraction of intestinal 

samples and the methods of b-diversity analysis are shown 

in Table S1 (please see the Supporting Information online).

Sensitivity analyses did not reveal any change in the 

main effects of probiotics on food allergies and gut 

microbiota diversity. Funnel plots showed a slight publi

cation bias, but not all effects were significant according 

to Egger’s parametric or Begg’s nonparametric distribu

tion tests.

Probiotics supplementation on multiple food allergies

Seven studies assessed the effects of probiotics supple

mentation during pregnancy and infancy on food aller

gies in children.7,16–21 The number of studies associated 

with food allergies,16–19,21 cow-milk allergy,7,16,19,20 egg 

allergy,7,16,19 and peanut allergy19,20 were 5, 4, 3, and 2, 

respectively. Probiotics were provided in capsule or 

powder forms and at a dose of 0.1 to 24.2 billion 

colony-forming units (CFUs) per day. Probiotics sup

plementation during pregnancy and infancy can reduce 

the risk of total food allergy (relative risk [RR], 0.79; 

95% CI, 0.63–0.99; I2¼ 0%), cow-milk allergy (RR, 0.51; 

95% CI, 0.29–0.88; I2¼ 5%), and egg allergy (RR, 0.57; 

95% CI, 0.39–0.84; I2¼ 10%) (Fig. 2). No significant 

associations with peanut allergies were observed. 

Subgroup analysis (Table 5) showed that probiotics sup

plementation significantly decreased the risk of cow- 

milk and egg allergies in Europe but not in Oceania and 

Asia. The use of more than 2 types of probiotics had a 

beneficial effect on cow-milk allergy (RR, 0.45; 95% CI, 

0.23–0.86; I2¼ 51.8%) and egg allergy (RR, 0.55; 95% 

CI, 0.34–0.89; I2¼ 40.3%). Based on the dose–response 
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data, probiotics supplementation during pregnancy and 

infancy decreased the risk of food allergy in a nonlinear 

fashion (R2 ¼ 0.15, P-nonlinearity¼ 0.23), with stronger 

effects at doses of approximately 3–12� 109 CFUs per 

day (see Fig. S1 in the Supporting Information online). 

The summary RR (95% CI) for a 1.8� 109–CFU per 

day increment was 0.96 (0.93–0.99) for food allergy risk.

Only 1 study has assessed the effect of probiotics 

supplementation during pregnancy on food allergies in 

children.22 Probiotics were administered in capsule 

form at a dose of 1.8� 109 CFUs per day. There was no 

significant effect of probiotics supplementation on total 

food, cow-milk, egg, or peanut allergies.

The effects of probiotics supplementation on 

infants were evaluated in 9 intervention trials,8,23–30

which included 9 for total food allergy,8,23–30 5 for cow- 

milk allergy,8,24–26,29 4 for egg allergy,8,25,26,28 and 3 for 

peanut allergy.8,25,26 Probiotics were provided in pow

der form or as part of formula milk at a dose of 9– 

305� 107 CFUs per day. Supplementation of probiotics 

in infants significantly decreased the risk of cow-milk 

allergy (RR, 0.69; 95% CI, 0.49–0.96; I2¼ 0%) (Fig. 3). 

There were no significant effects on total food, egg, or 

peanut allergies. Subgroup analysis (Table 5) showed a 

significant difference among regions and probiotics 

types in cow-milk allergies. A significant reduction in 

risk was observed in the European subgroup (RR, 0.68; 

95% CI, 0.48–0.98; I2¼ 0%) and in those taking more 

than 2 types of probiotics (RR, 0.68; 95% CI, 0.48–0.98; 

I2¼ 0%). No association was found in the subgroups of 

Figure 1 Flow diagram of the literature search process.
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other regions or in 1 type of probiotic. Probiotics dos

age (R2 ¼ 0.183, P-nonlinearity¼ 0.1084) and follow-up 

duration (R2 ¼ 0.183, P-nonlinearity¼ 0.1084) did not 

show any nonlinear relationship with the risk of food 

allergy (see Fig. S1 in the Supporting Information 

online).

Three studies assessed the effects of probiotics sup

plementation during infancy on tolerance towards cow 

milk.31–33 The results indicated that probiotics supple

mentation did not accelerate cow-milk tolerance in 

infants with cow-milk allergy (RR, 1.39; 95% CI, 0.97– 

1.99; I2¼ 81%) (Fig. 2).

Perturbations of gut microbiota in food-allergic  
children with age progression

Alpha diversity. Data from 11 studies were included 

in this meta-analysis (308 patients and 655 

controls).34,36,38,40,41,44–49 Four indices were used to 

assess alpha diversity, including estimates of diversity, 

richness, and evenness (Shannon, Simpson, Chao1, and 

observed operational taxonomic units [OTUs]).

Eleven studies reported the Shannon index in 

patients (n¼ 308) vs controls (n¼ 655).34,36,38,40,41,44–49

No difference was observed between the groups (stand

ardized mean difference [SMD], −0.13; 95% CI, −0.42 

to 0.17; I2¼ 81.1%) (see Fig. S2 in the Supporting 

Information online). Within the follow-up duration cat

egories, there was a significant decrease, with a small 

effect size in the 0–6-month group (SMD, −0.36; 95% 

CI, −0.70, −0.03; I2¼ 55%) and an increase in the 6–12- 

month group (SMD, 0.5; 95% CI, 0.21 to 0.80; I2¼ 0%). 

Three studies provided data on the Simpson index in 

patients (n¼ 73) and controls (n¼ 77).36,46,48 The 

pooled estimate did not show any difference between 

the groups (SMD, −0.18; 95% CI, −0.74 to 0.38; 

I2¼ 60.8%), except for the 12–48-month subgroup, 

which showed a decrease (SMD, −0.74; 95% CI, −1.38, 

−0.09) (see Fig. S2 in the Supporting Information 

online).

With regard to richness, 4 studies provided data 

on Chao1 in patients (n¼ 125) vs controls 

(n¼ 458).38,41,44,49 There was no significant difference 

between the groups (SMD, 0.44; 95% CI, −0.48 to 1.36; 

Table 4 Characteristics of included studies for perturbations of gut microbiota composition in children with food allergy
Reference Study type Study  

region
No. of  

patients
Age Female, % Food allergy types

Bao (2021)34 Case control USA 34 39.4 ± 4.1 y (M ± SEM) 64.7% Food allergy
Bunyavanich (2016)35 Case control USA 226 3.6–16.9 mo (range) 51.7% Milk
Schink (2018)36 Case-control Germany 31 38.1 ± 15.1 y (M ± SD) 83.9% —
Du (2020)37 Case-control China 50 33.0 ± 11.7 y (M ± SD) 48.0% Wheat-dependent, 

exercise-induced 
anaphylaxis

Fazlollahi (2018)38 Case control USA 141 9.5 (7.1–12.3) mo (IQR) 32.6% Egg
Goldberg (2020)39 Case-control USA 291 Allergic: 77 (63.0–114.5) mo 

Control: 78 (48.0–125.3) mo 
(M, IQR) 

40.9% Milk, peanut, sesame, 
tree nuts

Kourosh (2018)40 Case-control USA 42 0–18 y (range) 52.4% Peanut/tree nuts, fish, 
milk, egg, sesame, 
soy, wheat, chick 
pea, lentil, avocado, 
green pea

Lee (2021)41 Case-control Australia 60 1–7 y (range) 60.7% Nuts, egg, and mixed 
allergies

Savage (2018)44 Case-control USA 216 Allergic: 153 (115–208) d 
Control: 142 (78–206) d 
(M, range) 

49.1% Milk, egg, peanut, 
soy, wheat, walnut

Dong (2018)45 Case-control China 120 2.9 ± 1 mo (M ± SD) 46.7% Milk
Ling (2014)46 Case-control China 79 5.4 ± 2.1 mo (M ± SD) 50.6% Milk, eggs, wheat, 

nut, peanuts, fish, 
shrimp, and 
soybeans

Ło�s-Rycharska (2021)47 Case-control Poland 44 15.1 ± 6.6 wk (M ± SD) 40.9% Milk
Yamagishi (2021)48 Case-control Japan 40 Allergic: 3.1 (1.5–5.5) ys 

Control: 4.0 (2.9–6.1) y 
(M, IQR) 

NA Egg

Azad (2015)49 Case-control Canada 166 3 mo or 1 y 48.8% —
Tanaka (2017)50 Case-control Japan 41 1 y 34.1% Egg, milk, wheat, 

soybean
Dong (2018)42 Case-control China 14 5–8 y (range) Sex-matched Milk
Guo (2016)43 Case-control China 24 5–8 y (range) 50.0% Milk
Abbreviations: IQR, interquartile range; M, mean; NA, not applicable; SD, standard deviation; SEM, standard error of mean.
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Figure 2 Forest plots of randomized controlled trials for probiotic supplementation during pregnancy and infancy on (a) total food 
allergy, (b) cow-milk allergy, (c) egg allergy, and (d) peanut allergy and (e) forest plot of randomized controlled trials for probiotic 
supplementation on tolerance towards food. Abbreviation: M-H, Mantel-Haenszel. 
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I2¼ 41.8%) (see Fig. S2 in the Supporting Information 

online). With regard to evenness, observed OTU data 

were provided in 4 studies (n¼ 89 patients, n¼ 97 

controls).40,41,47,48 No difference was observed between 

the groups (SMD, −0.24; 95% CI, −0.93 to 0.45; 

Figure 3 Forest plots of randomized controlled trials for probiotic supplementation during infancy on (a) total food allergy, (b) 
cow-milk allergy, (c) egg allergy, and (d) peanut allergy. Abbreviation: M-H, Mantel-Haenszel. 
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I2¼ 0%) (see Fig. S2 in the Supporting Information 

online).

Beta diversity. Beta-diversity comparisons between 

patients with food allergies and healthy controls were 

reported in 13 studies. Seven studies reported signifi

cant differences, whereas 5 studies reported no differen

ces. The remaining study demonstrated a significant 

difference in infants aged 3–6 months and 13– 

16 months and a nonsignificant difference in infants 

aged 7–12 months. These findings provide reliable evi

dence for differences in the gut microbiota composition 

of food-allergic children compared with that in the con

trols. However, this difference appears to be dependent 

on the age of children.

Differentially abundant microbial taxa in children with 

age progression. Fifteen studies were included to assess 

the relative abundance of gut microbiota and to identify 

significant differences between patients with food 

allergy and healthy controls at the phylum, order, 

family, or genus levels. The differences spanned 6 phyla, 

4 orders, 14 families, and 49 genera. Figure 4 shows the 

changes in gut microbiota abundance with age progres

sion in children with food allergies.

At the phylum level, the gut microbiota abundance 

differed across all age groups. Verrucomicrobia, 

Fusobacteria, Firmicutes, and Proteobacteria were elevated, 

and Actinobacteria was decreased in allergic children. Six 

families, including Clostridiaceae, Ruminococcaceae, 

Verrucomicrobiaceae, and Erysipelotrichaceae, increased, 

and 8 families, including Prevotellaceae, Bacteroidales, 

Peptostreptococcaceae, Bifidobacteriaceae, and 

Lactobacillaceae, decreased in the stools of children with 

allergies. At the genus level, the results showed an upward 

trend for Prevotella in allergic infants aged 0–6 months and 

a downward trend in infants more than 6 months old. The 

abundances of Blautia and Bacteroides first decreased and 

then increased with age. The abundance of probiotics in 

the intestine, including Lactobacillus, Bifidobacterium, 

and Enterococcus, decreases after age 48 months in chil

dren. Twenty-four genera, including Ruminococcus, 

Figure 4 Differentially abundant microbial taxa in children with age progression. Blue cells indicate increases and orange cells indicate 
decreases.
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Clostridium, Eggerthella, Flavonifractor, Anaerostipes, and 

Faecalibacterium, were elevated. The other 17 genera, 

including Butyricicoccus, Butyricimonas, Leuconostoc, 

Veillonella, and butyric acid–producing bacteria (eg, 

Eubacterium, Dialister), decreased with food allergy.

Probiotics supplementation on gut microbiota

Two studies on the effect of probiotics supplementation 

during pregnancy and infancy on gut microbiota com

position were included.17,18 Wickens et al17 suggested 

that bacteria from the environment can be inoculated 

into the digestive tract at birth, such as Bifidobacterium 

animalis subsp. lactis and Lactobacillus rhamnosus. 

However, children in the probiotics group had signifi

cantly higher detection rates of probiotics in feces at 3, 

12, and 24 months than those in the placebo group.17

L. rhamnosus was more likely to be present in feces at 

3 months (71.5%) than B. animalis subsp. lactis (22.6%), 

but the detection rate was similar at 24 months.17 Niers 

et al18 showed that, within the first 3 months of life, 

Lactococcus lactis colonization was significantly more 

frequent and more numerous in the probiotics group 

than in the placebo group; all children in the probiotics 

group and 85% of children in the placebo group had 

bifidobacteria colonization.

Two studies on the effect of probiotics supplemen

tation during infancy on the gut microbiota composi

tion were included.25,27 Taylor et al25 suggested that, at 

6 months of age, the rate of Lactobacillus colonization 

was significantly higher in the probiotics group (36%) 

than in the placebo group (21.6%); however, 

Lactobacillus colonization was associated with an 

increased risk of milk sensitization. West et al27 con

cluded that Lactobacillus paracasei ssp. paracasei F19 

(LF19) is a transient colonizer because LF19 was not 

detected in fecal samples from children aged 8–9 years.

DISCUSSION

Proactive approaches are required to reduce the global 

burden of food allergies. The findings from this current 

meta-analysis and review suggested that probiotics sup

plementation during pregnancy and infancy could 

reduce the risk of total food, cow-milk, and egg allergy, 

and probiotics supplementation during infancy reduced 

the risk of milk allergy in children. Dose–response anal

ysis indicated that more than 2 types of probiotics spe

cies had beneficial effects, and an increasement of 

1.8� 109 CFUs of probiotics during pregnancy and 

infancy per day could reduce the risk of food allergy by 

4%. The age-related microbiota composition can partly 

account for the varied effects of probiotics on food aller

gies. In this study, we explored for the first time the 

different effects of probiotics during pregnancy or 

infancy on various food allergies and probed the influ

encing factors, first revealing the role played by age- 

dependent microbiota perturbations.

The decreased risk of cow-milk allergy associated 

with probiotics in the meta-analysis is in concordance 

with findings from a systematic review of observational 

studies.14 Nevertheless, no meta-analysis has differenti

ated the effects of probiotics supplementation during 

pregnancy or infancy on distinct types of food allergies 

in children. Additionally, while the majority of studies 

in this meta-analysis indicated no significant impact of 

probiotics supplementation on food allergies, the overall 

results of the meta-analysis demonstrated a reduction in 

the risk of total food allergy, cow-milk allergy, and egg 

allergy associated with probiotics supplementation dur

ing pregnancy and infancy. One potential explanation 

could be that the meta-analysis expanded the sample 

size by aggregating multiple studies to make the protec

tive effect of probiotics more apparent.

Probiotics supplementation during both pregnancy 

and infancy had a more favorable effect on food aller

gies compared with supplementation during either 

pregnancy or infancy alone. In this meta-analysis and 

review, the supplementation of probiotics during both 

pregnancy and infancy was associated with a decreased 

risk of total food allergy, cow-milk allergy, and egg 

allergy. Meanwhile, probiotics supplementation during 

infancy alone was linked to a reduced risk of milk 

allergy, while supplementation during pregnancy alone 

showed no effect on food allergy. Although direct oral 

supplementation of probiotics during infancy may affect 

immune development through allergen-specific mecha

nisms, concurrent probiotics supplementation during 

pregnancy and infancy may have broader effects on the 

developing immune system.14 First, it may be related to 

the development of the infant immune system, which is 

influenced by maternal cells, pathogens, and commensal 

microorganisms (Fig. 5). Probiotics supplementation in 

pregnant mothers, which may directly modulate intesti

nal microorganisms, can affect the number of induced 

cells in the fetal lymphoid tissue and the development of 

secondary lymphoid organs.51 Probiotics colonize the 

intestine and ferment dietary fibers into short-chain 

fatty acids (SCFAs), which, in turn, can foster immune 

maturation in offspring by activating G protein– 

coupled receptors (GPRs) on the surface of the immune 

cells.51 Previous studies have shown that probiotics fer

mentation of dietary fiber during pregnancy and lacta

tion can induce the differentiation of regulatory T cells 

in the offspring.52 Second, maternal gut microbes can 

influence the composition and function of offspring gut 

microbes, thus promoting maturation of the body’s 

immune system (Fig. 5). A prospective birth cohort 
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study including 70 mother–infant pairs suggested that 

maternal gut microbiota share genes with infant gut 

microbiota from the perinatal period until a few weeks 

after birth and can shape the infant gut microbiota 

through horizontal gene transfer.53 Newborns are born 

in symbiosis with microorganisms before birth and 

have access to oral and body surface microorganisms 

through birth to promote the growth and maturation of 

the immune system.51 Third, prolonged and higher- 

dose probiotic supplementation during both pregnancy 

and infancy is more conducive to the colonization of 

beneficial bacteria in the intestinal tract.

The present study demonstrated that supplement

ing with more than 2 types of probiotics had a preven

tive effect on egg and milk allergies, whereas a single 

type did not. Combining more than 2 types of probiot

ics helps colonize the intestine more easily than a single 

type of probiotic. The synergistic effects of multiple pro

biotics can also modulate the immune responses.54 The 

combined use of several types of probiotics in fish sig

nificantly enhanced beneficial intestinal bacterial counts 

and mucosal immune responses, and altered the expres

sion of interleukin (IL)-1b, tumor necrosis factor a 

(TNF-a), and IL-10 cytokines.54 The combination of 

Bifidobacterium, Lactobacillus, and Enterococcus 

significantly increases the richness and evenness of the 

gut microbiota in mice,55 which may contribute to the 

reduction in food allergies.45 The approach of coloniza

tion of bacteria from a healthy population without food 

allergies is more advantageous than using a single strain. 

Another study found that the colonization of healthy 

infants by gut bacteria can protect against cow-milk 

allergy in germ-free mice.56 Therefore, targeting under

lying microbiota dysbiosis could be an option for reduc

ing food allergies in the future.

The current discourse on the impact of probiotics 

supplementation on allergic disease symptoms remains 

contentious. While probiotics supplementation did not 

accelerate cow-milk tolerance in infants with cow-milk 

allergy in this work, another study involving 

Lactobacillus rhamnosus GG (LGG) supplementation in 

mothers of breastfed infants with cow-milk allergy sig

nificantly improved Scoring Atopic Dermatitis 

(SCORAD) scores.57,58 Previous research suggests that 

probiotic supplementation can alleviate eczema and 

atopic dermatitis (AD) symptoms, resulting in reduced 

SCORAD scores and shorter eczema treatment dura

tion.59 In a 12-week clinical trial involving 50 children 

with moderate AD, the administered probiotic mixture 

effectively lowered the SCORAD scores and reduced 

Figure 5 Schematic mechanisms by which probiotic and gut bacteria modulate food allergy in children. Abbreviations: DC, dendritic 
cell; FceRI, Fc-epsilon receptor I; GPR, G protein–coupled receptor; IFN-c, interferon-c; IgA, immunoglobulin A; IgE, immunoglobulin E; IL, 
interleukin; SCFA, short-chain fatty acid; Th, T-helper; Tregs, regulatory T cells.
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topical steroid use.60 However, not all clinical studies 

support a clear role for probiotics in alleviating allergic 

disease symptoms. A 6-week probiotic mixture supple

mentation study in 100 children with mild-to-moderate 

AD did not reveal additional therapeutic or immuno

modulatory effects of probiotics on AD treatment.61

Some studies reported side effects linked to specific 

opportunistic bacterial pathogens that should be 

avoided.58,59 The differential impact of probiotics is 

associated with the type or strain, dosage, and equili

brium of the patient’s gut microbiota.59 Additionally, an 

RCT with 49 participants revealed variations in the con

sumption of probiotic Bifidobacterium lactis V9 among 

subjects with differing gut microbiota.62 Therefore, 

individual differences emerge as a pivotal factor influ

encing outcomes, underscoring the need for larger stud

ies to validate these results in the future.

The balance of gut microbiota is closely related to 

food allergies, and the intestinal microbiota composi

tion differs across age groups in infants and children. 

As infants grow and develop, the gut microbial compo

sition in individuals tends to be distributed toward an 

adult-like microbiota with a higher richness.63,64 In the 

early months of life, infants are exposed to a variety of 

microbial species, some of which colonize the intes

tines.65 Breast milk can provide infants with more pro

biotics, such as bifidobacteria and lactobacilli, and 

prebiotics, such as oligosaccharides, making it easier to 

form a bifidobacteria-dominated microbiota.66,67 Upon 

the introduction of solid foods, the intestinal microbiota 

undergoes a transition from infancy to adulthood, grad

ually adopting a microbiota dominated by Bacteroides 

and Firmicutes genera.68 The abundances of intestinal 

Bacteroides in food-allergic infants were inconsistent 

compared with healthy controls, suggesting that the 

intestinal flora composition of food-allergic children 

differed from that of normal children but tended to 

resemble that of adults. The abundance of 3 probiot

ics—Lactobacillus, Bifidobacterium, and Enterococcus— 

decreased after 48 months of age in children with food 

allergies compared with healthy controls. The elevated 

abundance of probiotics plays an essential role in regu

lating gut microbiota. Probiotics colonize the intestine 

and interact with intestinal epithelial cells or produce 

active substances to alleviate food-allergic diseases.69,70

Prevotella copri is a major species of the Prevotella genus 

in the human intestinal microbiome.71 It is responsible 

for the production of succinate, which stimulates den

dritic cell (DC) function and migration.72 The establish

ment of a fetal DC network provides protection against 

allergic diseases. The decreased abundance of 

Veillonella in saliva and stool samples is significantly 

related to peanut allergy.73,74 Veillonella can reduce 

inflammatory responses by degrading amylase-trypsin 

inhibitor variants and alleviating the symptoms of wheat 

food allergy.75

Continuous probiotics supplementation in infants 

during the critical period of microbiota and immune 

system maturation may offer benefits. Two mechanisms 

of action for probiotics supplementation have been pro

posed (Fig. 5). First, probiotics supplementation may 

improve food-allergic diseases by rebalancing the T- 

helper (Th) 1/Th2 immune response.76 Enhanced Th2 

immune responses are associated with food allergies,77

with IL-4 directing Th2 cell development. Additionally, 

Th2 cell differentiation induces the production of 

various cytokines, including IL-5, IL-10, and IL-13.78

IL-12p70 is a major cell-mediated Th1 immune cyto

kine promoting the production of interferon-c (IFN-c) 

and IL-2.79,80 Intervention with Bifidobacterium breve 

M-16V may enhance Th1-related cytokine IL-12p70 

production by activating MyD88 expression and 

decreasing Th2 cell proportion.81 Lactobacillus reuteri 

Fn041 regulates adaptive immune responses, leading to 

increases in the levels of IFN-c and IL-12 associated 

with Th1, as well as reducing the IL-4 and IgE levels 

associated with Th2 to suppress the inflammatory infil

tration of eosinophils and mast cells.82 L. reuteri Fn041 

can improve early atopic immune responses by regulat

ing the balance between Th1 and Th2 immune 

responses.82

Second, the intestinal microbiota, engaged in com

plex metabolic activities, generates numerous metabo

lites in the body (Fig. 5). The abundances of Prevotella 

and Veillonella were significantly correlated with the 

production of SCFAs in the oral and intestinal micro

biota.74 Butyric acid–producing bacteria, including 

Faecalibacterium, Anaerostipes, and Eubacterium (effec

tive SCFA producers),83–85 were decreased in this study. 

SCFAs binding to GPRs can activate diverse signaling 

cascades.86 SCFA receptors are expressed on the surface 

of DCs and regulatory T cells (Tregs). SCFAs enhance 

the function of intestinal CD103þ DCs by stimulating 

GPR109a cell surface receptor.87 The DC subpopulation 

can trigger the proliferation and expansion of Tregs in 

mesenteric lymph nodes, thereby promoting tolerance 

in the intestine.87 SCFAs increased the number of IgA- 

secreting lamina propria plasma cells and B cells in 

Peyer’s patches to protect against food allergy.88,89

SCFAs also directly inhibit mast cell degranulation and 

histamine release, regulating FceRI-mediated signaling 

molecules to alleviate allergic responses.90

A strength of our meta-analysis is the novel explo

ration of the distinct effects of probiotics during preg

nancy or infancy on various food allergies, probing the 
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influencing factors and, foremost, revealing the role 

played by age-dependent microbiota perturbations.

However, our study had several limitations. There 

is a paucity of experimental evidence regarding the 

effect of probiotics supplementation on food allergies, 

especially peanut allergies. Differences in probiotics and 

their mixtures used in these studies could introduce 

bias into the results.

CONCLUSION

Probiotics supplementation during both pregnancy and 

infancy demonstrated greater effectiveness against food 

allergies compared with supplementation during either 

pregnancy or infancy alone, with enhanced benefits 

observed at higher doses. Children with food allergies 

exhibited age-related changes in microbial profiles, 

offering insight into the varying effects of probiotics on 

food allergies. This study introduces a novel perspective 

to the prevention and treatment of food allergies in 

children.

Despite numerous conducted studies, additional 

trials with larger sample sizes are required to assess the 

effects of diverse probiotic strains, dosages, and inter

vention durations on food allergies. This systematic 

review and meta-analysis suggested that probiotics sup

plementation may offer significant benefits to children 

with food allergies. The potential mechanism might 

involve modifying the composition of gut microbiota. 

In future research, it is crucial to further explore the 

factors influencing gut microbiota stabilization. 

Additionally, conducting gut microbiota testing before 

probiotic intervention could enhance its effectiveness.
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