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The microbial communities that inhabit the human vagina 
are unique. Unlike the relatively diverse and even commu-
nities found at other body sites1, the vaginal microbiota of 

reproductive-age cisgender women is often dominated by single spe-
cies of Lactobacillus2–4. This Lactobacillus-dominant configuration 
was first reported in 1892 by Donderlein5 and has long been consid-
ered to be a hallmark of vaginal health6–9. The production of lactic 
acid as a fermentation end-product by Lactobacillus spp. lowers vagi-
nal pH (~4.0) and is thought to constrain the growth of many patho-
genic microorganisms10,11 and have a beneficial effect on the host 
epithelium, such as immune modulation12,13. However, around 25% of 
women in North America have communities that are not dominated 
by Lactobacillus spp. and are instead composed of a more proportion-
ally even collection of obligate and facultative anaerobes (for example, 
species in the genera Gardnerella, Prevotella, Atopobium, Sneathia, 
Megasphaera and Peptoniphilus)2,4,14–16. Women with these microbial 
communities are often diagnosed with bacterial vaginosis (BV), a 
common vaginal condition poorly characterized as a dysbiosis of the 
vaginal microbiota17,18. Many of these women do not report experi-
encing adverse vaginal symptoms (for example, odour and discharge), 
and appear to be otherwise healthy following gynaecological exami-
nation2,14,19,20. Epidemiological studies have linked the presence of 
these non-Lactobacillus-dominant communities with increased risk 
for adverse health outcomes, including sexually transmitted infec-
tion (STI) acquisition21–24 and spontaneous preterm birth25–35, which 
indicates that such communities may be less protective and hence 
non-optimal36. The mechanistic underpinnings of these epidemio-
logical associations have yet to be described in detail. Here, we discuss 
our current understanding of the vaginal microbiota, how these com-
munities interact with host tissues and propose the next steps on the 
path towards a deeper understanding of their relationship to health.

This Review focuses on the vaginal microbiota of cisgender 
female individuals, primarily of reproductive age. A brief dis-
cussion on the vaginal microbiota of premenarchal girls and  

postmenopausal women is included and highlights gaps in our 
knowledge of these age groups. We know comparably little about 
the vaginal microbiota of other individuals with a vagina, including 
transgender individuals. This topic was reviewed recently37. More 
study is needed to comprehensively characterize these microbial 
communities and their relationships with health.

Composition of the vaginal microbiota
Advances in molecular biology and DNA sequencing have enabled 
the high-throughput characterization of the taxonomic composi-
tion of the vaginal microbiota2,38. Composition is often established 
through the sequencing of 16S rRNA gene amplicons, although 
others have sequenced cpn60 gene amplicons39 or used a battery 
of taxon-specific quantitative polymerase chain reaction assays40. 
Although the bulk of these data describe the vaginal microbiota 
of women of reproductive age from North America, a growing 
number of studies have reported data from women from other reg
ions15,24,41–47. Most reproductive-age women have a vaginal micro-
biota where the taxonomic composition resembles one of a limited 
number of configurations termed community state types (CSTs; 
also referred to as vaginotypes or cervicotypes, see also ref. 36). These 
configurations can be represented by five CSTs, four of which are 
dominated by single species of Lactobacillus (CST I–Lactobacillus 
crispatus, CST II–Lactobacillus gasseri, CST III–Lactobacillus iners 
and CST V–Lactobacillus jensenii). A fifth configuration, CST IV, 
represents the more proportionally even collection of facultative 
and obligate anaerobes. The phylotypes common to CST IV include, 
among others, Gardnerella, Atopobium, Prevotella, Candidatus 
Lachnocurva vaginae (formerly known as BVAB1 (ref. 48)), Sneathia, 
Peptoniphilus, Finegoldia and Megasphaera38,49. These are largely fas-
tidious bacteria that are either difficult to cultivate or as yet uncul-
tivatable (for example, Ca. Lachnocurva vaginae48). The CSTs I, III 
and IV are the most prevalent, with around 90% of reproductive-age 
women having these CSTs2. Larger studies have used finer resolution 
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classification schemes that split the five CSTs into subtypes38, most 
of which distinguish between variations of CST IV and describe 
uncommon communities (for example, communities dominated by 
Bifidobacterium or Streptococcus). Although the CST approach does 
simplify community composition, it continues to be an important 
framework for the study of the vaginal microbiota.

The term ‘community state type’ was originally meant to con-
vey its representation of the taxonomic composition at a single time 
point2. This distinction is important because the vaginal micro-
biota of some women varies, including shifts in CST50,51. Changes 
in composition are sometimes explicable, occurring at the onset 
of menstruation or following unprotected vaginal intercourse. 
Menstruation is accompanied by biophysical and hormonal fluc-
tuations that affect host physiology and therefore the microbial 
communities present. Unprotected vaginal intercourse introduces 
semen into the vagina, an alkaline substance that temporarily raises 
vaginal pH52, and has the potential to bring new microbial species 
and strains into the community from the penile microbiota53. Other 
changes in the vaginal microbiota cannot be obviously attributed to 
a specific factor and may be the result of fluctuations in host physiol-
ogy, competitive interactions between members of the community, 
bacteriophage activity, ecological drift or some other mechanisms54. 
The vaginal microbiota of some individuals, however, do not dem-
onstrate temporal variation and instead maintain their community 
composition over several menstrual cycles50. It is unclear whether 
this stability is a property of the microbiota, host physiology or a 
combination of the two. Understanding the factors that drive tem-
poral variation in the vaginal microbiota will be critical in the devel-
opment of strategies to modulate these communities.

The vaginal microenvironment
The oestrogenized vaginal epithelium consists of several squamous 
layers, with a superficial outermost layer overlying an intermediate, 

parabasal and basal layer beneath55 (Fig. 1). The upper layer is com-
posed of flattened, dead cells that have undergone cornification, 
which offers a physical protective barrier56. This barrier also serves 
as an immune junction separate from that of the cervix. Although 
immune cells are present at the transformation zone of the cervix57, 
vaginal mucosal tissue harbours few T cells and antigen-presenting 
cells under normal conditions but displays increased numbers in 
response to inflammatory triggers. In addition, the vaginal mucosal 
immune profile fluctuates with hormonal cycles, such that the high-
est levels of immunoglobulin A (IgA) and IgG are present imme-
diately before ovulation, with lower levels at the time of menses58.

The vaginal epithelium itself also responds to hormonal fluc-
tuations, undergoing cyclic proliferation throughout the menstrual 
cycle with a peak at ovulation (Fig. 1), although changes are not 
as drastic as those of the uterus59. The vaginal epithelium is coated 
in a cervical mucus layer that is subject to regulation by hormonal 
fluctuation, with progesterone-associated thickening seen in the 
peri-ovulatory phase60. Although the vagina does not produce its 
own mucus, cervical mucus is produced in high enough abun-
dance to flow down and coat the vaginal epithelium61. The mucus 
is composed primarily of proteins, lipids, water and glycoproteins 
referred to as mucins62,63. Every mucin is rich in sequences of repeat-
ing serine and threonine residues, with the repeat regions serving 
as the location for O-linked glycosylation chains composed of 
N-acetylgalactosamine, galactose and N-actylglucosamine and 
capped with fucose or sialic acid64,65. These glycosylation chains play 
a key role in mucin function, and alterations to these patterns are 
associated with several adverse health conditions, including spon-
taneous preterm birth66. Mucins are hypothesized to play a protec-
tive role in the vaginal epithelium67,68 and may serve as a source of 
nutrition for the vaginal microbiota69,70. Mucin levels vary through-
out the menstrual cycle; for instance, the amount of MUC5B peaks 
mid-cycle at ovulation71 and is accompanied by an increase in the 
glycosylation of several mucins72. Glycogen made by the vagi-
nal epithelium is also thought to be a nutrient source for vaginal 
bacteria73,74. Vaginal epithelial cells, in particular, contain an over-
abundance of glycogen relative to other epithelial tissues75. Higher 
concentrations of free glycogen are associated with lower levels of 
progesterone76, whereas concentrations of intracellular glycogen are 
associated with higher levels of oestrogen77. Levels of both free and 
intracellular glycogen fluctuate throughout the menstrual cycle.

Many characteristics of vaginal physiology are altered following 
hormonal changes associated with the onset of menopause. The 
predominant cell type of the parabasal layer changes from stratum 
spinosum to predominantly basophilic stratum granulosum with 
clear cell nuclei78,79. Cycles of epithelial cell proliferation no longer 
occur due to the reduction in circulating oestrogen levels, and vagi-
nal atrophy is common80. Moreover, there are decreases in cervical 
mucus production81 and changes in mucus composition82 concomi-
tant with the decline in oestrogen and testosterone levels observed 
in this period. Levels of free and intracellular glycogen also decline83. 
In addition, an increase in vaginal pH to ≥4.7 is one of the more sen-
sitive markers of menopause84. Altogether, these changes contribute 
to a vastly different microenvironment for the microorganisms that 
reside in the vagina. These differences are thought to be responsible 
for menopause-associated changes in vaginal microbiota composi-
tion85 and the genitourinary syndrome of menopause86. Hormonal 
replacement therapy is often used to treat genitourinary syndrome 
of menopause, and this may in turn affect the vaginal microbiota 
through its effect on the vaginal microenvironment.

Lactobacillus spp. and the vaginal microbiota
It is well accepted that a vaginal microbiota dominated by 
Lactobacillus spp. offers a greater degree of protection to their host 
compared with a more diverse microbiota. Recent work has high-
lighted that populations of lactobacilli are typically not composed 
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Fig. 1 | effect of the menstrual cycle on the vaginal microenvironment. 
During the menstrual phase (M; red), blood and the shed functional layer of 
the uterine endometrium flow through the vagina. During the subsequent 
proliferative phase (P; blue), higher oestradiol levels promote the growth 
and maturation of the vaginal epithelium. The mucus is thinner during this 
stage, which is thought to facilitate sperm penetration. Following ovulation 
(O; orange), progesterone levels rise during the secretory phase (L; green), 
which halts the growth and maturation of the epithelium. Superficial cells of 
the epithelium are shed, and the protective mucus layer is thicker.
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of a single strain and display a substantial amount of intraspecies 
diversity87. Considering the continual supply of new mutants origi-
nating from each genetic background88, these populations might 
best be thought of as clouds of related genotypes rather than single 
entities. This intraspecies diversity could be a critical determinant 
of community stability by buffering the dominant Lactobacillus 
population against perturbations89. There is consensus that the 
Lactobacillus spp. common to the human vagina are probably 
not equivalent with respect to their positive impacts on the host. 
Communities dominated by L. crispatus are thought to offer the 
most protective benefits whereas those dominated by L. iners offer 
the least. L. jensenii and L. gasseri may be equivalent to L. crispatus 
as they are more similar to this species in their metabolic capabili-
ties than to L. iners90, but their rarity impedes the investigation of 
their relationships to host health. Many hypotheses exist to explain 
the associations between Lactobacillus dominance and vaginal 
health, and they have varying degrees of evidential support9,91,92. In 
this section, we review our current understanding of the mecha-
nistic explanations for these associations and discuss the ecology 
of the vaginal microbiome when Lactobacillus spp. are abundant. 
We focus our discussion on the biology of L. crispatus in the vaginal 
microenvironment of women of reproductive age (Fig. 2), followed 
by a brief examination of L. iners and how it differs from the other 
vaginal lactobacilli.

L. crispatus is a Gram-positive, facultative, anaerobic bacterium 
that produces both the l-lactic and d-lactic acid isomers as its pri-
mary fermentation end-products93 (Fig. 2). Although originally 
thought to lack the intrinsic ability to degrade glycogen without the 
help of host amylases94,95, studies have now confirmed and described 
this metabolic capability in L. crispatus, including the identification 
of PulA homologues96–98. As the human vaginal epithelium is rich in 
glycogen99, L. crispatus probably derives the majority of its carbon 
and energy through the fermentation of glycogen, converting it ulti-
mately into lactic acid. Lactic-acid production lowers vaginal pH, 
often to levels less than pH 4.2 (refs. 11,38), and this acidification of 
the vaginal microenvironment is one hypothesized means by which 
L. crispatus benefits the host. In vitro studies have demonstrated that 
acidic conditions can preclude or inhibit the growth of less benefi-
cial bacterial species, including Gardnerella, Prevotella, Mobiluncus 
and Escherichia coli100–102. Lactic acid may also have direct effects on 
host tissues by modulating the immune system and gene expres-
sion. For example, d-lactic acid, which is produced by L. crispatus 
(and L. gasseri and L. jensenii) but not L. iners90,103, has been asso-
ciated with the differential expression of immune factors by host 
tissues104,105. Meanwhile, another study13 found that the ionization 
status of lactic acid, which is a function of pH, had a larger impact 
on its ability to suppress inflammation than the isomer form. Lactic 
acid more readily diffuses through epithelial cell membranes when 
in the non-ionized form106. It is clear that the relationship between 
lactic acid and vaginal health is multifaceted and its effects extend 
beyond lowering vaginal pH.

There are other mechanisms by which L. crispatus is thought to 
exert beneficial effects on vaginal health. L. crispatus (and L. gasseri 
and L. jensenii) have long been known to produce hydrogen perox-
ide (H2O2) in the presence of oxygen107 (Fig. 2). It was thought that 
their production of H2O2 served to inhibit the growth of anaerobic 
bacteria in the vaginal microenvironment108,109. Observational stud-
ies found associations between the presence of H2O2-producing lac-
tobacilli and vaginal health7,109,110. We now know that only L. iners 
does not produce H2O2 (ref. 3), which confounds this observation 
with other factors that distinguish L. iners from the other lactoba-
cilli103,111. In vitro studies have shown that H2O2 produced by lac-
tobacilli can inhibit the growth of many of these less beneficial 
bacteria112, although Gardnerella spp. seem to have the capabil-
ity to resist H2O2 (ref. 113). These studies do not necessarily have 
relevance to the in vivo production of H2O2 by Lactobacillus spp. 

The reactions require molecular oxygen, which is probably rare in 
the microaerobic vaginal microenvironment where oxygen (O2) 
concentrations are one-tenth to one-fifth of that of atmospheric 
concentrations114. Furthermore, any H2O2 that is produced can be 
quenched through reactions with various non-microbial compo-
nents of vaginal fluid115. If H2O2 production does play an inhibitory 
role in the vaginal microenvironment, it is probably limited to local-
ized interactions between the lactobacilli and their competitors. 
L. crispatus and other vaginal lactobacilli may also have other means 
of inhibiting the growth of competitors, including the production of 
bacteriocins116,117.

In addition to its thick cell wall, L. crispatus produces a pro-
teinaceous outer surface layer called the S-layer118,119 (Fig. 2). The 
S-layer, and its associated proteins, is thought to contribute to the 
ability of this species to adhere to host cells118,119 and to its immuno-
modulatory capabilities120,121. The adherence of L. crispatus to vagi-
nal epithelial cells is thought to block adhesion of pathogens122,123, 
although the role of adhesion to a rapidly shedding vaginal epithe-
lium is unclear. Vaginal microbiota that are dominated by L. cris-
patus have been associated with lowered vaginal inflammation27,124, 
although a complete mechanistic explanation of the immunomodu-
latory capacity of the species has not been described. It is likely that 
proteins in the S-layer contribute. Efforts to further characterize the 
biology of L. crispatus and many other vaginal bacteria have been 
severely hampered by a lack of tools to manipulate the genetics of 
the species. Methods to generate targeted gene knockout mutants of 
these species will prove critical in future research.

A final aspect of L. crispatus biology that is often overlooked 
but may be relevant to vaginal health is the dominance of L. cris-
patus in the vaginal microbiota and therefore the low proportion 
of other bacteria. L. crispatus, and the other vaginal Lactobacillus 
spp., can dominate the vaginal niche, often accounting for 99% of 
the sequences in 16S rRNA gene amplicon data2,38. Some women 
also have L. crispatus as the main species over several menstrual 
cycles, which indicates that the dominance of these populations can 
be relatively stable50. By dominating the vaginal niche, L. crispatus 
reduces and precludes the growth of other, potentially harmful, 
bacteria. This concept, termed ‘pathogen resistance’, is certainly a 
benefit provided by a L. crispatus-dominant vaginal microbiota125. 
Ecological theory predicts that a more complex community utilizes 
more resources in an environment than a simple community due 
to the non-overlapping portions of the niches of the constituents126.  
A community that mostly comprises a single species should there-
fore not exploit the vaginal environment to the same extent as the 
more proportionally even CST IV community. For example, L. cris-
patus is not predicted to be a substantial degrader of host protec-
tive mucus, as it is not capable of removing terminal sialic acid and 
fucose residues from mucin glycosylation chains127,128. This is in 
contrast to some of the other non-Lactobacillus spp. that are capable 
of these metabolic feats127–132. L. crispatus can therefore preserve 
this critical barrier that protects the vaginal epithelium. Moreover, 
L. crispatus does not produce a cytolysin that would allow it to lib-
erate resources through the lysis of host cells133,134, and it does not 
appear to be capable of producing many of the biogenic amines 
thought to be responsible for vaginal odour135 (for example, tri-
methylamine or cadaverine).

L. iners is perhaps the most common vaginal bacteria and is 
unique among the Lactobacillus spp.2,38. The species was first identi-
fied as the vaginal lactobacilli that did not produce H2O2 (refs. 108,110). 
Compared with other vaginal Lactobacillus spp., L. iners has a 
smaller genome103,111, produces a cytolysin133 and does not produce 
the d-isomer of lactic acid90,104. Its relevance to vaginal health has 
been a topic of much discussion136. The dominance of L. iners in the 
vaginal microbiota is associated with low vaginal pH (<4.5) due 
to its production of l-lactic acid as a fermentation end-product2,38. 
Longitudinal studies have also found that communities dominated 
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by L. iners are less stable than those dominated by other lactobacilli, 
and often transition to CST IV, which may contribute to its lim-
ited association with vaginal health50,137. In line with this, L. iners is 
sometimes found in low-to-moderate relative abundance in CST IV 
communities2,38,108,110. This species can vary its gene expression 
when found within CST IV communities, including higher expres-
sion of its cytolysin138,139. These results suggest that the impact of 
L. iners on vaginal health may depend on the composition of the 
community. Although more research is needed to define the rela-
tionship between L. iners and vaginal health, all indications are that 
L. iners offers fewer benefits to its host than L. crispatus, or the other 
vaginal lactobacilli, although strain-level variations might modulate 
these benefits. One study140 has indicated that metabolic differences 
between L. iners and the other vaginal lactobacilli could be lever-
aged to selectively inhibit L. iners.

The vaginal microbiota when Lactobacillus does not dominate
Many women have a vaginal microbiota that is composed of other 
facultative and obligate anaerobic bacteria2,4,14–16 (Fig. 3). These 
communities are associated with a higher vaginal pH (>4.5) and 
with symptoms such as abnormal discharge and/or odour, although 
many are asymptomatic2,14,19,20. It is estimated that between 23% and 
29% of women of reproductive age have BV17,18, which is diagnosed 
on the basis of a high vaginal pH, a paucity of Lactobacillus spp., 
an increased abundance of odorific biogenic amines and the pres-
ence of clue cells (shed vaginal epithelial cells coated in bacteria)141. 
In research settings, BV is typically identified using a Gram-stain 
procedure that produces a Nugent score142. Standard-of-care treat-
ment for BV includes the use of metronidazole (topical or systemic) 
or clindamycin (topical)143, but treatment often fails to produce a  

lasting resolution of the condition144,145. The connections between 
BV and CST IV are clear: both are defined by a lack of lactobacilli 
and a higher vaginal pH. However, CST IV communities are not 
always associated with vaginal symptoms, and this is often described 
as asymptomatic BV. The question of whether to treat remains con-
troversial, as epidemiological studies have linked asymptotic BV 
with an increased risk of adverse health outcomes146. Understanding 
which, if any, CST IV communities do not cause vaginal symptoms 
and/or do not increase risk of adverse health outcomes will go a 
long way towards understanding when treatment is necessary.

Similar to lactobacilli, host-produced glycogen is likely to be a 
major source of carbon and energy for CST IV bacteria. Gardnerella 
and many of the other species common to CST IV have genes associ-
ated with glycogen degradation97,139,147. Expression levels of predicted 
glycogen-debranching enzymes are high in these communities and 
similar to that observed in communities in which Lactobacillus spp. 
are dominant139. Studies have shown a positive association between 
levels of free glycogen in vaginal fluid and Lactobacillus spp. domi-
nance74,148; however, we argue that this does not conflict with the 
observation that CST IV bacteria also utilize glycogen. The CST IV 
vaginal microbiota, which is often higher in bacterial load and more 
diverse, might simply consume more of the host-produced glycogen. 
The species common to CST IV have at least two other metabolic 
capabilities that probably allow them to access more host-produced 
resources (Fig. 3). First, various Gardnerella spp. and Prevotella spp. 
can produce sialidase and fucosidase enzymes that can degrade 
mucin glycan chains127–132. Second, Gardnerella (and other species) 
produce a cholesterol-dependent cytolysin that can lyse epithe-
lial cells, thereby liberating their intracellular contents for use by 
the microbiota134,149,150. Damage to the vaginal epithelium probably 
activates proinflammatory signalling pathways, drawing leukocytes 
to the area151. These two metabolic feats—mucin degradation and 
host cell lysis—might synergistically act to damage the vaginal epi-
thelium; that is, removing the mucin layer would give the cytolysin 
better access to epithelial cells. Although mature vaginal epithelium 
cells are regularly shed, the CST IV microbiota is probably capable 
of actively depleting the vaginal epithelium (Fig. 3). Consistent with 
this hypothesis is the observation that women with symptomatic BV 
experience higher cell shedding, whereas those with asymptomatic 
BV shed fewer but more immature epithelial cells152. We argue that 
these results indicate that the vaginal epithelium of some women 
with CST IV microbiota is damaged and might require repair before a 
Lactobacillus-dominant microbiota can re-establish. This hypothesis 
may explain the frequency of recurrence following treatment of BV.

The metabolic activities of the microorganisms that constitute 
the CST IV vaginal microbiota also affect the vaginal metabolome. 
A prominent example is that these communities are associated with 
an increased abundance of biogenic amines, including putrescine, 
cadaverine and tyramine135,153 (Fig. 3). Biogenic amines are hypoth-
esized to explain the connection between BV and vaginal odour. 
However, their role in the vaginal microenvironment probably 
extends beyond this symptom. Production of biogenic amines is a 
mechanism of acid tolerance that could be necessary for these bac-
teria to survive in the vagina154. Moreover, several biogenic amines 
can either increase the lag time or decrease the growth rate of the 
vaginal lactobacilli, which suggests that they may drive the estab-
lishment and maintenance of the CST IV microbiota155. Gardnerella 
is not thought to be a primary producer of these metabolites; spe-
cies within the Prevotella, Mobiluncus, Dialister, Parvimonas, 
Megasphaera and Peptostreptococcus genera are instead suspected to 
be responsible135. The metabolic pathways that microorganisms use 
to produce biogenic amines are generally not well characterized, so 
other bacteria could be involved in their generation. For example, 
it is not known how trimethylamine, the compound thought to be 
responsible for the fishy odour symptom of BV, is produced in the 
vagina. Mobiluncus spp. are capable of producing trimethylamine156 
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Fig. 2 | The biology of L. crispatus in the vaginal microbiota. When 
lactobacilli (red rods) dominate the vaginal microbiota, less beneficial 
bacteria (blue rod) are lower in abundance. Lactobacillus spp. produce PulA, 
a glycogen-degrading enzyme that generates smaller glucose polymers 
that are then imported into the cell and fermented via pyruvate (Pyr), 
which produces lactic acid isomers (d-La and l-La). This acidifies the 
microenvironment to a pH of <4. Glycogen-breakdown products can also 
be used to produce H2O2. Growth of less beneficial bacteria is suppressed 
by the low vaginal pH and bacterial products, such as lactic acid, 
bacteriocins and H2O2. The production of d-lactic acid and S-layer proteins 
can modulate host immune function in an anti-inflammatory manner.
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but it seems unlikely that this is the only source, as these bacteria are 
not common in the vaginal microbiota.

It is important to also recognize that the CST IV microbiota is 
not monolithic. A unifying characteristic of these communities is 
that they are not dominated by lactobacilli, but their composition 
can take a number of forms. Although the presence of Gardnerella, 
Atopobium and various Prevotella spp. is a common motif, some 
women have CST IV communities that also include high propor-
tions of Ca. Lachnocurva vaginae, Sneathia, Mobiluncus and even 
L. iners38,40,157. It could be that a subset of species common to CST IV 
are responsible for the majority of its association with adverse 
health outcomes or that these associations could be strengthened by 
looking at subtypes of these communities. Compositional charac-
terizations of the vaginal microbiota have largely been derived from 
16S rRNA gene amplicon survey data, which has probably under-
estimated the diversity within CST IV communities. Gardnerella 
vaginalis, for example, has long been known to be a diverse spe-
cies158 and has recently been split into multiple genomospecies159. 
Most women who are colonized by Gardnerella have several of 
these species in their vaginal microbiota87,158. Over the years, many 
genomic and in vitro phenotypic comparisons of Gardnerella strains 
have been conducted, some of which suggest that there is variation 
in pathogenic potential within Gardnerella (for example, not all 
Gardnerella genomes encode a known sialidase)158,160–162. Shotgun 
metagenomic studies are necessary to disentangle diversity within 
Gardnerella and many of the other species common to CST IV com-
munities. Disentangling the diversity of CST IV will be crucial for 
resolving the connection between these communities and vaginal 
health and will lead to improved targeted treatments.

Host factors that affect vaginal microbiota composition
Early epidemiology studies have reported that vaginal microbi-
ota composition varies depending on the ethnicity or race of the 
woman. Some studies found that Black women in North America 

and Europe were less likely to have a vaginal microbiota domi-
nated by Lactobacillus than white women in these populations2,14. 
For example, in a study of 396 women in North America, 10.3% of 
those who identified as white or of European descent had a CST IV 
vaginal microbiota compared with 40.4% of those who identified as 
Black or African American2. Another study identified a subtype of 
CST IV, defined by the presence of Ca. Lachnocurva vaginae, that 
was not prevalent in women in North America who identified as 
Asian38. Given that race is a social construct, the factors that drive 
these differences are multifaceted and it has been hypothesized 
that socioeconomic, cultural, genetic and/or behavioural factors, as 
well as inequalities in healthcare, are responsible163. However, it is 
important to note that these differences have largely not been found 
to extend within CSTs. The taxonomic composition of a vaginal 
microbiota assigned to CST IV, or any other for that matter, does 
not appear to depend on race or ethnicity. One exception is that 
Prevotella spp. may be more abundant in CST IV communities from 
women in populations from Africa24,42. An in-depth comparison of 
women from Africa and women with African ancestry living on 
other continents is necessary to confirm this observation.

Moreover, it is important to recognize and discuss the concor-
dance in the composition of the human vaginal microbiota among 
women of reproductive age from around the world. L. iners, L. cris-
patus and G. vaginalis are three of the most prevalent bacterial spe-
cies in the vaginal microbiota of women from every population 
examined thus far, including populations from North America38, 
South America164, Europe165, Africa24,45 and Asia15,41. A study of 
Amerindian women living a pre-agricultural lifestyle found that 
their vaginal microbiota was commonly composed of L. iners or 
G. vaginalis, but L. crispatus was less prevalent than in other popula-
tions47. All indications are that the taxonomic composition of the 
vaginal microbiota is a shared distinguishing trait of humanity. 
Lactobacillus spp. do not dominate the vaginal microbiota of any 
other known mammal166, and many bacterial species common to the 
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vaginal microbiota of humans have not been identified in the vagi-
nal microbiota of other mammals, including non-human primates. 
Gardnerella spp. have been identified in rhesus macaques, but less 
frequently than in humans and at lower relative abundance167. It 
remains to be seen whether these Gardnerella spp. are distinct from 
those found in humans. The driving factors that underlie the devel-
opment of the unique vaginal microbiota in humans are unknown.

Age is also known to affect the vaginal microbiota. Less is 
known about the communities that reside in the vagina during and 
before puberty or during and following menopause. This lack of 
knowledge should not be interpreted as a reflection of the relative 
importance of the vaginal microbiota to health in these popula-
tions. For example, the vaginal microbiota is thought to play a role 
in urinary tract infections (UTIs) during childhood, which afflict 
3–7% of premenarchal girls168,169. For postmenopausal women, the 
vaginal microbiota is thought to contribute to atrophic vaginitis 
and associated sexual dysfunction170,171. Both premenarchal girls 
and postmenopausal women are less likely to have communities 
dominated by Lactobacillus spp., although their composition is also 
distinct from the CST IV communities commonly found in women 
of reproductive age172,173. One commonality between these two age 
groups is their propensity to have lower levels of circulating oes-
trogen than women of reproductive age99. Low oestrogen levels are 
thought to result in a thinner vaginal epithelium that is not as rich in 
glycogen77. It could be that without this glycogen, the environment 
is less conducive for the growth of lactobacilli and other species 
common to the vaginal microbiota of women of reproductive age. 
The number of bacteria in these communities is typically several 
logs lower than that found in women of reproductive age, which 
could be driven by lower nutrient levels174. Additional studies are 
needed to define the relationship between the vaginal microbiota 
and health in these age groups (see ref. 175 for more in-depth discus-
sion on the menopause and the vaginal microbiota).

Although often overlooked, the vaginal microbiota of premenar-
chal girls is of particular interest as it may influence the future com-
position of these communities. At birth, neonatal oestrogen levels 
are high due to the circulating hormones of their mother. However, 
oestrogen levels decline during the first weeks of life and normally 
remain low until the initiation of puberty176. A recent study177 exam-
ined the vaginal microbiota of 4–6-year-old girls from China and 
found that the communities were composed of a diverse collection 
of Peptoniphilus, Porphyromonas, Prevotella, Pseudomonas and E. coli 
species. The timing of the transition towards a vaginal microbiota 

that resembles that at reproductive age is not well characterized. 
One study178 reported that the vaginal microbiota of 10–13-year old 
girls resembled that of a woman of reproductive age before their first 
menses, which indicates that the transition must happen earlier in 
life. If we generalize the results of these two studies, we can posit 
that the transition must occur between the age of 6 and 12 years. 
Oestrogen levels begin to rise during this time frame, which indi-
cates that it may be a driving force behind the transition. The source 
of the species that gain dominance in the vaginal microbiota during 
reproductive ages (for example, L. crispatus, L. iners and G. vaginalis) 
is also not clear. It could be that these species are vertically transmit-
ted from mother to offspring during the birthing process or early 
in life. Under this scenario, the species would need to persist in the 
vagina throughout early childhood and then increase in abundance 
during adolescence. However, the vaginal microbiota might expe-
rience more frequent influxes of new strains and species through 
another mechanism, and transmission happens later in life.

The vaginal microbiota and adverse health outcomes
Results from epidemiological studies have described associations 
between the composition of the vaginal microbiota and adverse 
health outcomes (Table 1). In this section, we will refer to a com-
munity with a lower proportion or abundance of Lactobacillus 
and a higher proportion or abundance of facultative and obli-
gate anaerobes (for example, Gardnerella, Prevotella, Atopobium 
and Sneathia) as a ‘non-optimal vaginal microbiota’. Note that 
this definition includes women with asymptotic and symptom-
atic BV. There is strong and consistent evidence from longitudi-
nal studies linking this non-optimal microbiota to an increased 
risk of acquiring and transmitting human immunodeficiency 
virus (HIV)42,23,24,179,180. Similar associations have been identified 
between these communities and an increased risk for acquiring 
other STIs, including gonorrhoea, chlamydia, trichomonas, her-
pes simplex virus 2 (HSV2) or syphilis21,181–184. The non-optimal 
microbiota has also been linked to both incidence and prevalence 
of human papillomavirus (HPV), as well as the associated devel-
opment and progression of cervical intraepithelial neoplasia and 
increased risk for cervical cancer185–190. Again though, there are 
contrary reports191–194. The composition of the vaginal microbiota 
has also been associated with an increased risk for non-sexually 
transmitted infections, including UTIs195,196, vulvovaginal candi-
diasis197–199 and pelvic inflammatory disease (PID)200–202. There 
is evidence to support an association between the composition 

Table 1 | epidemiological associations between the composition of the vaginal microbiota and vaginal health

outcomes Summary of findings Refs.

STI acquisition (including HIV, 
gonorrhoea, chlamydia, trichomonas,  
HSV, HPV and syphilis)

results of studies vary, especially depending on the STI; the presence or 
increased relative abundance of Lactobacillus spp. is generally associated 
with decreased risk; BV, a cST IV vaginal microbiota, and particular 
BV-associated phylotypes are associated with increased risk

21,42,23,24,179,180,182–184,190–194

Vulvovaginal candidiasis results of studies vary, with one finding no evidence for differences in 
vaginal microbiota of women with and without recurrent vulvovaginal 
candidiasis but another suggesting that risk of symptomatic candidiasis 
may be higher for a Lactobacillus-dominant community

197,198

UTIs UTIs were more common among women with vaginal E. coli colonization 
and without H2O2-producing Lactobacillus

195

PID Higher growth of several BV-associated bacteria was associated with 
increased risk for PID, whereas there was no association between carriage 
of non-BV-associated bacteria and PID risk

200–202

Preterm delivery results of studies vary; increased relative abundance of Lactobacillus spp. 
has generally been shown to be associated with decreased risk; BV, a 
cST IV vaginal microbiota, and particular BV-associated phylotypes may 
be associated with increased risk

26–28,32,34,203,29,205,206,226
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of the vaginal microbiota and reproductive health, including  
risk for spontaneous preterm birth32,203–205. Studies that utilized 
sequence-based methodologies have found associations between 
specific vaginal bacteria, and bacterial community structures and 
preterm birth, spontaneous preterm birth and preterm premature 
rupture of fetal membranes; however, results were heterogeneous 
across studies, with some finding no association26–28,34,29,206,207.

Despite the volume of work that has established associations 
between the vaginal microbiota and health, we still lack descriptions 
of the causal mechanisms and pathways. It is particularly difficult 
to determine whether the associations are driven by the microbi-
ota influencing host physiology or by changes in host physiology 
affecting the composition of the microbiota. Parsing these tripartite 
associations will require the development of animal and cell culture 
model systems that incorporate the vaginal microbiota (Box 1).

efforts to modulate the vaginal microbiota
Efforts to impart lasting change in the composition of the vagi-
nal microbiota have largely proven unsuccessful. Standard-of-care 
antibiotic treatment for BV often yields only temporary resolu-
tion of the condition208–210. Other methods to repress the growth of 
BV-associated anaerobes and/or support the growth of lactobacilli 
include oestrogen therapy171 and treatment with lactic acid211 or 
boric acid212 (Fig. 4). Many have also suggested probiotics to mod-
ulate the vaginal microbiota, either following antibiotic treatment  

or primary treatment. Several vaginal probiotics containing 
Lactobacillus spp. have been designed and tested, and have largely 
yielded mixed results213–220. There are a number of reasons why the 
efficacies of these probiotics fell short of expectations. In some 
cases, the probiotic formulations did not utilize species that are 
common to the human vagina, opting instead to use those that 
were already in gut probiotics215,220. Other probiotics were given 
to women in the form of oral tablets with the expectation that 
such a probiotic might influence host physiology, creating a vagi-
nal environment favourable for Lactobacillus214,220. A randomized, 
double-blind, placebo-controlled clinical trial221 was conducted to 
test the efficacy of a vaginally delivered L. crispatus probiotic called 
Lactin-V. The probiotic was provided to women with BV, follow-
ing metronidazole treatment, and resulted in a difference of 15% 
in the rate of BV recurrence between the treatment and placebo 
groups (30% versus 45% recurrence)221. This result is encouraging; 
however, more than one-quarter of the treated women experienced 
BV recurrence within 12 weeks. Identifying the factors that drive 
treatment failure will prove crucial for the development of more 
effective vaginal probiotics.

Promising results from studies reporting the efficacy of fecal 
microbiota transplants to treat recurrent Clostridioides difficile 
infections222 have motivated the investigation of vaginal micro-
biota transplants (VMTs) as a potential approach to treat recur-
rent BV (Fig. 4). The concept involves sampling vaginal secretions 
from an individual with a Lactobacillus-dominant vaginal micro-
biota and introducing the sample into the vagina with recurrent 
and/or recalcitrant BV223. An exploratory study of women with 
recurrent BV indicated the potential efficacy for this approach, as 
long-term remission was achieved for four of the five recipients 
of the VMT224. It is not clear how VMT could be implemented 
at scale safely, as each donation requires extensive testing for 
vaginal pathogens and viruses (for example, HSV or HPV) and 
contains a relatively small bacterial load225. However, studies of 
the mechanisms of VMT are likely to yield new insights into the 
factors that influence the successful modulation of the vaginal 
microbiota. These insights could then be translated to traditional 
Lactobacillus probiotic formulations with increased safety and can 
be produced at scale.

Box 1 | Model systems to study the vaginal microbiota

A major obstacle in vaginal microbiome research is a lack of suit-
able animal and cell culture model systems. These model systems 
are needed to investigate and test mechanistic hypotheses gen-
erated through observational studies of the vaginal microbiota. 
Unfortunately, the uniqueness of the human vaginal microen-
vironment and the human vaginal microbiota means that rou-
tinely used animal model systems lack relevance. Mouse models, 
which have proven useful for investigations of the intestinal tract 
microbiota227,228, have also been used in studies of the vaginal mi-
crobiota229–231. However, because these animals do not naturally 
have a vaginal microbiota that resembles that of humans, it is 
difficult to interpret whether results are generalizable to humans. 
Animal models are more frequently used in STI research232–235, 
but these studies have historically, and unfortunately, not consid-
ered the role of the microbiota in the host–pathogen interaction. 
Two-dimensional and three-dimensional cell culture models 
have been developed and used in vaginal microbiome research, 
including cellular hydrogels236,237, self-assembled organoids238,239 
and microfluidic organ-on-a-chip models240. Notably, micro-
fluidic organ-on-a-chip models offer the ability to place cells 
within defined geometries, can reproduce key microenviron-
ment conditions and can be maintained for long durations. They 
also allow the integration of immune cells, the use of hormonal 
control and the application of relevant mechanical forces241. An 
ideal organ-on-a-chip model would include cervical and vaginal 
tissues with a transition zone between them. The vaginal epi-
thelium should be stratified in multiple layers and should shed 
superficial cells that contain glycogen stores; and vaginal mucus, 
either produced by the cervical tissue or supplied from an ex-
ternal source, should coat the vaginal tissue. The application of 
spatial transcriptomics to such a model system would allow the 
researcher to characterize the local host response to the micro-
biota and would be critical for the multi-layered vaginal epithe-
lium242,243. The development and use of such a model would be 
a major breakthrough for vaginal microbiota research and will 
enable the testing of mechanistic hypotheses.

VMT

VMT donor with vaginal
microbiota dominated

by  L. crispatus

Processing
and

screening 

Recipient vaginal
microbiota with 
recalcitrant BV 

Recipient vaginal
microbiota after

intervention

Antibiotics Hormones Probiotics pH lowering 

Fig. 4 | Vaginal microbiota interventions to treat bacterial vaginosis. 
Existing treatments include antibiotics (for example, metronidazole), 
oestrogen therapy (hormones), vaginal lactobacilli probiotics, and lactic 
acid and boric acid (to lower the pH). However, these interventions vary 
in their success and do not effectively prevent recurrent/recalcitrant 
BV. VMT is a promising intervention for BV. A suitable donor with a 
Lactobacillus-dominant vaginal microbiota is identified. Vaginal secretions 
are collected from the donor, screened for various STIs and processed. 
The processed vaginal secretions are then introduced into the vagina of 
a recipient who is typically experiencing recurrent/recalcitrant BV. The 
recipient may or may not be treated with antibiotics before the transplant. 
Success is defined as a long-lasting resolution of the BV of the recipient and 
a shift in their vaginal microbiota to the Lactobacillus-dominant configuration.
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outlook
Over the past decade, we have learnt a great deal about the vaginal 
microbiome and how it relates to host health. Unfortunately, our 
reliance on observational studies and amplicon-based compositional 
survey data has stymied the progress towards a mechanistic under-
standing of these communities and their impact on host physiology. 
These observational studies have generated innumerable hypotheses 
that must be tested in the laboratory. Recent in vitro work has char-
acterized aspects of the biology of individual bacteria (for example, 
on glycogen-debranching enzymes of the vaginal bacteria96,98), but 
these studies often do not include the microbiota and/or the host. 
A major barrier towards the development of a mechanistic under-
standing is the dearth of suitable model systems for in vitro experi-
mentation. Although it is true that no model is perfect, some models 
are certainly better than others, and a cervicovaginal model that 
incorporates the vaginal microbiota is acutely needed. Progress must 
be made in the field of multi-omics as an integration of metage-
nomic, metatranscriptomic, metabolomic and immunology datasets 
could afford a detailed look into the biology of the microbiota–host 
relationship as it exists in vivo. Results from such in vitro and in vivo 
studies, along with interventional clinical trials, will help drive the 
development of advanced and innovative treatment options and pre-
ventative measures for the myriad of adverse health outcomes that 
affect individuals with a vagina and remain unaddressed.
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