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Background: Gut microbiota and obesity are deeply interconnected. However, the causality in the rela-
tionship between these factors remains unclear. Therefore, this study aimed to elucidate the genetic
relationship between gut microbiota and childhood obesity.
Methods: Genetic summary statistics for the gut microbiota were obtained from the MiBioGen con-
sortium. Genome-wide association studies (GWAS) summary data for childhood obesity were obtained
from North American, Australian, and European collaborative genome-wide meta-analyses. Mendelian
randomization (MR) analyses were performed using the inverse variance weighting method. 16 children
with obesity and 16 without obesity were included for clinical observation, and their weight, body mass
index, blood lipid levels, and gut microbiology were assessed. Paired t-test was the primary method of
data analysis, and statistical significance was set at P < 0.05.
Results: MR identified 16 causal relationships between the gut microbiome and childhood obesity. In the
caseecontrol study, we found that five gut microorganisms differed between children with and without
obesity, whereas three gut microorganisms changed after weight loss in children with obesity.
Conclusion: Our study provides new insights into the genetic mechanisms underlying gut microbiota and
childhood obesity.
Trial registration number: ChiCTR2300072179.
Name of registry: Change of intestinal flora and plasma metabolome in obese children and their weight
loss intervention: a randomized controlled tria
URL of registry: https://www.chictr.org.cn/showproj.html.
Date of registration: 2023-06-06.
Date of enrolment of the first participant to the trial: 2023-06-07.
© 2024 The Authors. Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and
Metabolism. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In children and adolescents younger than 18 years, obesity is
defined as body mass index (BMI) � 95th percentile [1]. In recent
years, the prevalence of childhood obesity has been increasing; the
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global age-standardized prevalence of obesity in children and ad-
olescents increased from 0.7% (95% CrI 0.4e1.2) in 1975 to 5.6%
(4.8e6.5) in 2016 in girls, and from 0.9% (0.5e1.3) in 1975 to 7.8%
(6.7e9.1) in 2016 in boys [2]. Childhood obesity is associated with
many adverse health outcomes during childhood and adulthood,
including type 2 diabetes mellitus, dyslipidemia, metabolic syn-
drome, obstructive sleep apnea, and hypertension [3]. As a result,
international efforts are underway to explore the factors associated
with childhood obesity and its active prevention [4]. Childhood
obesity is influenced by a combination of genetics and environment
[5]. A genome-wide association meta-analysis identified multiple
childhood obesity SNP loci such as rs9568856 and rs9299 [6].
Lifestyle factors such as diet and exercise have been shown to have
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a significant impact on childhood obesity [7]. In addition, the in-
fluence of the gut microbiota on childhood obesity is increasingly
being emphasized [8]. Although the correlation between obesity
and the gut microbiota is well established, the causal relationship
remains controversial [9].

Gut microbiota is a key factor in obesity [10] because of its
significant impact on the metabolic function of the host [11]. Im-
balances in the gut microbiota, such as the genus Clostridium and
the species Eubacterium rectale, Clostridium coccoides, Lactobacillus
reuteri, Akkermansia muciniphila, and Staphylococcus aureus, have
been observed in populations with obesity [12]. In addition, gut
microbiota metabolites, such as short-chain fatty acids and mem-
brane proteins, may influence host metabolism [13]. With the
proposed gut-microbiotaebrain axis, fecal microbiota transplants
and prebiotic supplements are emerging as new anti-obesity
therapies [14]. However, most previous studies were
caseecontrol studies in which confounders were difficult to
exclude, and these conditions limited the inference of a causal
relationship between gut microbiota and obesity.

Mendelian randomization (MR), which uses genetic variation as
an instrumental variable (IV), can assess whether the observed
associations between risk factors and outcomes are consistent with
causal effects [15]. The assignment of genotypes from parent to
offspring is randomized so that the association between genetic
variation and outcome is not affected by common confounders and
the causal sequence is plausible [16]. Thus, MR has been widely
used to determine the causal relationship between a variety of
diseases and gut microbiota [17e19]. In addition, once the direction
of the causal association is confirmed by MR, validation using data
obtained from a caseecontrol study can be performed [20].

In this study, we used MR analysis to assess the causal rela-
tionship between the gut microbiota and childhood obesity. In
addition, we validated this relationship using sequencing data from
a caseecontrol study (Fig. 1). Our results will help elucidate the
potential genetic relationship between the gut microbiota and
childhood obesity to reduce its occurrence.
Fig. 1. Study
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2. Materials and methods

2.1. Genome-wide association studies (GWAS) summary data

GWAS summary data for the gut microbiota were obtained
from the largest genome-wide meta-analysis published to date on
gut microbiota composition, conducted by the MiBioGen con-
sortium [21]. This study analyzed genome-wide genotypes and
16S rRNA fecal microbiome data from 18,340 individuals (24 co-
horts). The genetic instruments for gut microbiota were acquired
from The MRC Integrative Epidemiology Unit (IEU) OpenGWAS
data infrastructure, which is a manually curated collection of
complete GWAS summary datasets available for download as
open-source files or by querying a database of the complete data.
Nine phylum-level taxa, 16 class-level taxa, 20 order-level taxa, 37
family level taxa, and 128 genus-level taxa were included in the
analyses.

GWAS summary data related to childhood obesity were ac-
quired from a public GWAS dataset [6] that included 5530 cases
(BMI �95th percentile) and 8318 controls (BMI <50th percentile)
of European ancestry. These are the most comprehensive GWAS
data available on childhood obesity because of the collaborative
meta-analysis of 14 cohort studies. The 14 cohorts included in
the study were the Avon Longitudinal Study of Parents and
Children, Northern Finland 1966 Birth Cohort, British 1958 Birth
Cohort e Type 1 Diabetes Genetics Consortium subset, British
1958 Birth Cohort e Wellcome Trust Case Control Consortium
Subset, French Young study PCA adjusted, Lifestyle Immune
System Allergy Study, Western Australian Pregnancy Cohort
study, Children's Hospital of Philadelphia PCA adjusted, Essen
Obesity Study PCA adjusted, Helsinki Birth Cohort Study, Car-
diovascular Risk in Young Finns Study, and Copenhagen Study on
Asthma in Childhood, CM-GOYA study, and Generation R Study. A
full description of the study design, sample characteristics, sta-
tistical analyses, and quality control can be obtained from pub-
lished results [6].
design.
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2.2. Selection of instrumental variables (IVs)

The IVs used in MR analysis should meet three conditions: 1)
they are correlated with exposure, 2) they are not associated with
confounding factors, and 3) they are not related to the outcome
directly but through the exposure [22]. The IVs used in this study
met the above conditions and are listed in the Supplementary
Table S1. The variables for the gut flora met the genome-wide
significance threshold of P < 5 � 10�5, and the variables for child-
hood obesity met P < 5 � 10�8. The parameters kb ¼ 10,000 and
r2 ¼ 0.01 were used to remove the linkage disequilibrium between
variables. F-statistics were computed to estimate whether weak
instrument bias was observed and to improve the power of the
selected instrumental variables. The F-statistics for all IVs were
above the threshold of 10 [23].

2.3. Two-sample MR analysis

Two-sample MR analysis was used to evaluate the causal rela-
tionship between gut microbiota and childhood obesity. The SNPs
used as IVs were within a distance of 10,000 kb and r2 > 0.001. A
two-sampleMR package (version 0.5.6) was used to analyze theMR
data [15]. Five models were used in the MR analysis: 1) the inverse
variance-weighted (IVW) model, 2) the weighted median esti-
mator, 3) the MR-Egger regression method, 4) the simple mode,
and 5) theweightedmode. The IVWmodel was used as the primary
method to evaluate the causal relationship between gut microbiota
and childhood obesity. The significance level was set at P < 0.05.
Gut microbiota and childhood obesity SNPs were further assessed
using statistical analyses, including Cochran's Q test, pleiotropy
test, and leave-one-out sensitivity test. If the pleiotropy test sug-
gested the presence of pleiotropy (P < 0.05), the MR Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) method was used to filter
potential outliers and assist in correcting them [24]. Finally, leave-
one-out sensitivity analysis was performed to evaluate whether a
single SNP provided significant results.

2.4. Study population

This study was approved by the Chinese Clinical Trial Registry
(ChiCTR2300072179). All studies involving human participants or
human tissue must be in accordance with the principles set out in
the Declaration of Helsinki. This study recruited total of 40 children,
including 20 children who aspired to lose weight and 20 children
whose weight was within the normal range for their gender and
Fig. 2. Trial flowchart. BM
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age. The inclusion criteria were age between 9 and 12 years, no
history of liver- or thyroid-related diseases, and no history of
congenital diseases or genetic defects. In addition, children who
have already reached puberty are excluded. The children were
matchedwith corresponding controls without obesity based on age
and sex at baseline. After written informed consent was obtained
from all the participants and their families, the children underwent
their first physical examination and laboratory tests. Children with
obesity received a 3-month weight loss intervention that included
calorie restriction and increased activity levels. Three childrenwith
obesity opted out because they could not adhere to the diet. Seven
children completed the weight loss intervention and underwent a
second physical and laboratory examination (Fig. 2).
2.5. Clinical physical and laboratory examinations

Physical measurements of the participants were completed in
the early morning fasting state. The participants’ height and weight
were measured, BMI was calculated, and abdominal circumference
(AC) was measured around the abdomen at the level of the umbi-
licus. The participants were asked to refrain from overeating or
excessive hunger the day before the laboratory tests. Fasting serum
was used to test for lipids including total cholesterol (TC), tri-
glycerides (TG), high-density lipoprotein (HDL), low-density lipo-
protein (LDL), and very low-density lipoprotein (VLDL).
Participants' feces were collected and stored immediately at�80 �C
for further analyses. In this study, the Illumina NovaSeq/HiSeq
high-throughput sequencing platform was used, and the whole-
genome birdshot (WGS) strategy was adopted. The total DNA of
the macro-genome of the extracted colonies or the cDNA double
strand of the macro-transcriptome synthesized using mRNA as a
template was randomly interrupted into short fragments, and li-
braries with inserts of appropriate length were constructed, which
were then subjected to the paired-end (PE) method. The remaining
values were expressed as the mean ± standard deviation. Statistical
analyses were performed using SPSS version 24.0.

The student-t test was used to detect differences between the
two groups when the data were normally distributed and satisfied
the variance chi-square test; the Welch t' test was used to detect
differences between the two groups when the data were normally
distributed but did not satisfy the variance chi-square test; and the
ManneWhitney nonparametric test was used to detect differences
between the two groups when the data did not satisfy the normal
distribution. Statistical significance was set at P < 0.05.
I: body mass index.



Fig. 3. Forest plot of the association between gut microbiota and childhood obesity.
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3. Results

3.1. Two-sample Mendelian randomization of gut microbiota
(exposure) on childhood obesity (outcome)

An MR study identified causal relationships between the gut
microbiota and childhood obesity. Ten gut microbiota showed
causal relationships with childhood obesity, including class Del-
taproteobacteria (OR ¼ 1.24, 95 % CI: 1.03e1.49; P ¼ 0.023), class
Lentisphaeria (OR ¼ 1.13, 95 % CI: 1.01e1.26; P ¼ 0.039), family
Bacteroidaceae (OR ¼ 1.27, 95 % CI: 1.03e1.58; P ¼ 0.028), family
Desulfovibrionaceae (OR ¼ 1.21 95 % CI: 1.01e1.45; P ¼ 0.039),
genus Bacteroides (OR ¼ 1.24, 95 % CI: 1.03e1.49; P ¼ 0.023), genus
Butyricicoccus (OR ¼ 1.24 95 % CI: 1.02e1.51; P ¼ 0.030), genus
200
Eubacterium oxidoreducens (OR ¼ 0.84, 95 % CI: 0.70e1.00;
P ¼ 0.030), genus Rikenellaceae RC9 gut group (OR ¼ 1.12, 95 % CI:
1.02e1.23; P ¼ 0.022), order NB1n (OR ¼ 1.13, 95 % CI: 1.02e1.26;
P ¼ 0.025), and order Victivallales (OR ¼ 1.13, 95 % CI: 1.01e1.26;
P ¼ 0.039) (Fig. 3, Supplementary Table S2).

All gut microbiota identified as significantly associated with
childhood obesity were further analyzed using Cochran's Q test
(Supplementary Table S3), pleiotropy test (Supplementary
Table S4), and leave-one-out sensitivity analysis. The test results
were used to determine the optimal MR method. In the absence of
heterogeneity and pleiotropy, the estimated IVW results were
preferentially used; thus, this method was used most frequently in
this study. When the data exhibited heterogeneity but no pleiot-
ropy, a weightedmedian or random-effect IVWwas used. Although



Fig. 4. Scatter and leave-one-out sensitivity analysis of the association between gut microbiota and childhood obesity.
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a few results were heterogeneous, the direction of the effect ob-
tained using the other methods was consistent with the IVW re-
sults. If the pleiotropy test suggested that the result was
multiefficacious, the MR-Egger method was used. The leave-one-
out sensitivity test identified nine SNPs that were significantly
associated with and causally relevant to childhood obesity and
should be considered reliable (Fig. 4).

3.2. Reverse Mendelian randomization analysis of childhood obesity
(exposure) on gut microbiota (outcome)

Based on the results of reverse MR analysis, there was a sug-
gestive association between childhood obesity and six gut micro-
biota, including genus Barnesiella (OR ¼ 0.93, b ¼ �0.08;
P ¼ 0.035), genus Clostridium sensustricto1 (OR ¼ 0.94, b ¼ �0.06;
P¼ 0.040), genusMarvinbryantia (OR¼ 0.92 b¼�0.09; P¼ 0.046),
201
genus Oscillospira (OR ¼ 0.07, b ¼ 1.08; P ¼ 0.039), genus Rom-
boutsia (OR ¼ 0.94, b ¼ �0.07; P ¼ 0.028), and genus Turicibacter
(OR ¼ 0.90, b ¼ �0.11; P ¼ 0.005) (Fig. 5, Supplementary Table S2).
The results of the sensitivity analysis are shown in Fig. 6.

3.3. Differential gut microbiota in children with obesity and
controls

To validate the intestinal flora that contributes to childhood
obesity, we selected 16 children with obesity and matched them
with 16 control children based on sex and age. Table 1 shows a
comparison of the baseline demographics and blood lipid levels of
all participants. We further examined the macrogenes of the gut
microbiota in the feces of these children and identified five gut
microbiota that showed significant differences between the chil-
dren with and without obesity (Fig. 7). Our results show that the



Fig. 5. Forest plot of the association between childhood obesity and gut microbiota.
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class Deltaproteobacteria, family Bacteroidaceae, family Desulfo-
vibrionaceae, genus Bacteroides, and genus Butyricoccus were
more abundant in children with obesity than control children.
3.4. Differential gut microbiota before and after weight loss in
children with obesity

To validate the changes in gut flora caused by obesity, we
examined the gut flora macrogenes before and after weight loss in
these children. Table 2 shows the changes in physical examination
and blood lipid levels before and after weight loss. We further
examined the macrogenes of the gut microbiota in the feces of
these children and identified three gut microbiota that showed
significant differences between the children with and without
obesity (Fig. 8). Our study showed that the abundance of genus
Clostridium sensustricto1, genus Romboutsia, and Turicibacter was
elevated after weight loss in children with obesity.
4. Discussion

Using MR analysis, we identified nine gut microorganisms that
contributed to an increased risk of childhood obesity through MR
analysis and one gut microorganism that contributed to a reduced
risk of childhood obesity. Furthermore, we used inverse MR and
found that childhood obesity resulted in a decreased abundance of
five gut microbes and an increased abundance of one gut microbe.
All IVs were identified using the PhenoScanner and PheWAS da-
tabases to avoid confounding effects. After confirming the causal
relationship between the gut microbiome and childhood obesity
using MR, we validated the results in a caseecontrol study. We
verified the five gut microorganisms with elevated abundances in
children with obesity, which included the class Deltaproteobac-
teria, family Bacteroidaceae, family Desulfovibrionaceae, genus
Bacteroides, and genus Butyricicoccus, which is consistent with the
MR analysis. Validation using the caseecontrol study showed that
weight loss increased the abundance of genus Clostridium
202
sensustricto1, genus Romboutsia, and Turicibacter, which was
consistent with the results of the MR analysis.

The gut microbiota has a symbiotic relationship with their hu-
man hosts, and Bacteroidetes and Firmicutes are predominantly
detected in fecal samples from healthy humans [25]. Changes in the
gut microbial abundance shape the unique characteristics of mi-
crobial communities and may influence human health and disease
[26]. The gut microbiota produce a variety of substances through
digestion, including short-chain fatty acids [27], and support adi-
pogenesis [28], and hormones production [29]. Thus, obesity-
associated microbiota contributes to the development of obesity
by altering host energy metabolic homeostasis, insulin resistance,
inflammation, and central appetite via the microbiota-gutebrain
axis [30].

The class Deltaproteobacteria includes Desulfovibrio, Desulfo-
bacter, Desulfococcus, Desulfonema, and Desulfuromonas. Studies
have shown that Deltaproteobacteria are more abundant in obese
mice [31] and are strongly associated with obesity-induced
nonalcoholic fatty liver disease [32]. Our study demonstrated that
the class Deltaproteobacteria may be associated with a higher risk
of childhood obesity and is higher in children with obesity than
control children, but does not change significantly after weight loss,
suggesting that class Deltaproteobacteria contributes to the onset
of obesity and is not a consequence of obesity.

Bacteroidaceae are non-pathogenic dominant bacteria in the
human gut, and studies have shown a modest positive correlation
between Bacteroidaceae and BMI [33]. The increased abundance of
Bacteroidaceae in individuals with obesity suggests a reduction in
other microbial species [34], and reduced gut microbiota pop-
ulations have been associated with elevated levels of pro-
inflammatory markers and insulin resistance [35]. Bacteroidaceae
were also significantly higher in children with obesity than control
children in our study, and MR analysis predictions suggested that
Bacteroidaceae increased the risk of childhood obesity.

Butyricoccus secretes short-chain fatty acids, antimicrobial
peptides, and Clostridium butyricum, which is the dominant intes-
tinal flora in humans. Some studies have shown that Butyricoccus



Fig. 6. Scatter and leave-one-out sensitivity analysis of the association between childhood obesity and gut microbiota.

Table 1
Demographic and blood lipids feature of participants in the caseecontrol study.

characteristics Obese Lean pa

n 16 16
Age 10.694 ± 1.0188 10.738 ± 1.0138 0.904
Weight 62.056 ± 14.407 28.297 ± 6.7959 <0.001 ***
BMI 28.894 ± 3.053 16.119 ± 1.4432 <0.001 ***
AC 85.444 ± 12.514 59.069 ± 4.6969 <0.001 ***
TC 4.71 (4.4425, 5.33) 4.37 (3.82, 4.45) 0.006 **
TG 1.53 (1.4575, 1.83) 1.12 (0.855, 1.44) <0.001 ***
HDL 1.125 (0.94, 1.205) 2.01 (1.7475, 2.4) <0.001 ***
LDL 2.77 (2.4475, 2.9625) 2.24 (2.14, 2.3925) 0.043 *
VLDL 0.6 (0.5225, 0.665) 0.58 (0.45, 0.61) 0.508

Normally distributed data: Mean± SD. Non-normally distributed data: Median (P25,
P75). AC: abdominal circumference. TC: total cholesterol. TG: triglyceride. HDL: high
density lipoprotein. LDL: low-density lipoprotein. VLDL: very low-density lipopro-
tein. a unpaired t test. *P < 0.05, **P < 0.01, ***P < 0.001.
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was negatively correlated with BMI and lipid levels [36]. Exogenous
supplementation with Amuc_1100 [37] or calebin A [38] increased
203
the relative abundance of Butyricoccus and exerted anti-obesity
effects. However, other studies have shown that Butyricoccus was
positively correlated with the HOMA-IR index in individuals with
obesity [39]. Inulin supplementation reduced Butyricoccus abun-
dance and improved insulin sensitivity in hum-ob mice [40]. The
reason for this discrepancymay be that the gutmicrobiota and fecal
short-chain fatty acids vary by type of obesity and country of origin.
Our findings support the latter hypothesis that Butyricoccus in-
creases the risk of developing obesity.

A study on gut microbes in children with obesity showed that
Clostridium leptum and Eubacterium hallii were associated with
adipose tissue storage, whereas Clostridium difficile and the
Staphylococcus genus were correlated with low BMI [41]. Similarly,
our findings suggested a decrease in the abundance of the genus
Clostridium sensustricto1 in childrenwith obesity after weight loss,
which was validated by MR analysis and caseecontrol studies.

Romboutsia is more abundant in the healthy gut and plays an
important role in maintaining gut health [42]. Increasing Rom-
boutsia abundance is beneficial for reducing high-fat diet (HFD)-



Fig. 7. Unpaired t-tests for participants' gut microbiota.

Table 2
Physical exam and blood lipids before and after weight loss in obese children.

characteristics Before weight loss After weight loss pa

n 16 16
Weight 62.056 ± 14.407 57.481 ± 13.016 <0.001 ***
BMI 28.894 ± 3.053 27.049 ± 2.8992 <0.001 ***
AC 85.444 ± 12.514 80.656 ± 11.034 <0.001 ***
TC 4.8225 ± 0.69996 3.6956 ± 0.64079 <0.001 ***
TG 1.5875 ± 0.36084 1.0194 ± 0.47508 <0.001 ***
HDL 1.1225 ± 0.23173 1.18 ± 0.26967 0.409
LDL 2.6581 ± 0.45625 2.17 ± 0.39727 0.002 **
VLDL 0.615 ± 0.20258 0.39125 ± 0.21577 0.002 **

Normally distributed data: Mean± SD. Non-normally distributed data: Median (P25,
P75). AC: abdominal circumference. TC: total cholesterol. TG: triglyceride. HDL: high
density lipoprotein. LDL: low-density lipoprotein. VLDL: very low-density lipopro-
tein. a paired t test. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 8. Paired t-tests for gut microbiota before and after weight loss in obese children.
Before: gut microbiota before weight loss in obese children. After: gut microbiota after
weight loss in obese children.
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induced obesity [43]. Exogenous supplementation with substances
such as chlorogenic acid [44] and oral hydroxysafflor yellow A [45]
ameliorated HFD-induced obesity in mice by increasing the abun-
dance of Romboutsia. Our findings suggest that Romboutsia
enrichment is elevated after weight loss in children with obesity,
indicating that Romboutsia may contribute to weight loss.

Turicibacter belongs to the order Bifidobacterium and is a com-
mon intestinal probiotic. Turicibacter abundance is significantly
reduced in individuals with obesity [46] and even in their offspring
204
[47]. ProlongedHFD feeding leads toobesityand insulin resistance in
mice, accompanied by a reduced relative abundance of Turicibacter
and Anaeroplasma [48]. The consumption of pinto beans improved
HFD-induced obesity and insulin resistance by increasing the
abundance of Ruminococcus, Turicibacter, and Lactobacillus sp [49].
Our study also observed improvements in BMI, abdominal circum-
ference, and lipid levels after weight loss in children with obesity,
accompanied by an increase in Turicibacter abundance.

Recent studies have shown that gut flora is influenced by gender
andhormone levels. A study [50] of thegutmicrobiotaof 39menand
36 postmenopausal women showed that after correcting for dietary
habits, ageandBMI, therewerestill differences in the compositionof
the gut microbiota between men and women. Among them, men
had the higher presence of Veillonella and Methanobrevibacter
genera, while the abundance of Bilophila was higher in women.
Puberty and menopause are periods of dramatic changes in hor-
mone levels in women. A study [51] showed that menopausal
women have a higher ratio of stercobacteria/bacteroidetes, higher
relative abundance of Lachnospira and Roseburia, and lower abun-
dance of the genera Prevotella, Parabacteroides and Bilophila.
However, changes in gut microbiota around puberty have not been
reported.Noneof theparticipants included in this studyhad reached
puberty. Therewas no significant difference in the abundance of gut
microbiota detected between boys and girls in this study. Therefore,
more studies on gut flora and puberty are needed.

To the best of our knowledge, this is the first application of MR
analysis to explore the causal relationship between the gut micro-
biome and childhood obesity and to validate the findings using a
caseecontrol study. The strength of this study lies in the fact that
confounding factors could be avoided by exploring the causal rela-
tionship between the gut microbiome and childhood obesity using
MR analysis. The conclusions of our studywere confirmed by robust
sensitivity analyses. In addition, MR results were shown to be clin-
ically informative in a caseecontrol study. However, our study has
some limitations. First, the selection of SNPs as IVs may be affected
bypotential horizontal pleiotropy. Genetic inheritance, lifestyle, and
environmental factors can alter the gut microbiome, resulting in
small differences in the IVs. The current study could not determine
whether all IVs were associated with confounding factors. Second,
the participants selected for the GWAS summary statistics in this
study were from European populations; therefore, extrapolation of
the study findings to other ethnic populations may be limited, even
though we partially validated the results in Asian populations.
Finally, because childrenwith obesity who voluntarily participate in
aweight loss interventions aredifficult to recruit on a large scale, our
caseecontrol sample size was not large enough, which may have
resulted in false-positive results. Therefore, the gut microbes that
were identified in the MR analysis but did not show differences in
the caseecontrol analysis should be investigated in future studies.
5. Conclusions

Based on the GWAS summary data for gut microbiota and
childhood obesity, MR evaluations revealed that 16 gut microbiotas
were causally associated with childhood obesity, including the
genera Bacteroides, Butyricicoccus, Clostridium, Romboutsia, and
Turicibacter. These results provide a novel understanding of the
genetic mechanisms underlying the relationship between the gut
microbiota and childhood obesity.
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AC Abdominal Circumference
BMI Body Mass Index
GWAS Genome-wide Association Studies
HDL High-density Lipoprotein
HFD High-fat Diet
HOMA-IR Homeostatic Model Assessment for Insulin Resistance
IEU Integrative Epidemiology Unit
IV Instrumental Variable
LDL Low-density Lipoprotein
MR Mendelian Randomization
OR Odds Ratio
PCA Principal Component Analysis
PE Paired-end
SNP Single Nucleotide Polymorphism
TC Total Cholesterol
TG Triglycerides
VLDL Very Low-density Lipoprotein
WGS Whole-genome Birdshot
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